Properties

Label 3.2e4_59.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 59 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$944= 2^{4} \cdot 59 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 8 x^{4} + 8 x^{3} + 16 x^{2} - 4 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 14 + \left(16 a + 6\right)\cdot 17 + \left(4 a + 6\right)\cdot 17^{2} + \left(11 a + 8\right)\cdot 17^{3} + 7 a\cdot 17^{4} + \left(3 a + 6\right)\cdot 17^{5} + \left(13 a + 9\right)\cdot 17^{6} + \left(6 a + 13\right)\cdot 17^{7} + \left(10 a + 11\right)\cdot 17^{8} + \left(12 a + 6\right)\cdot 17^{9} + \left(3 a + 2\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 2 }$ $=$ $ a + 13 + 7\cdot 17 + \left(12 a + 11\right)\cdot 17^{2} + \left(5 a + 14\right)\cdot 17^{3} + \left(9 a + 13\right)\cdot 17^{4} + \left(13 a + 1\right)\cdot 17^{5} + \left(3 a + 2\right)\cdot 17^{6} + \left(10 a + 7\right)\cdot 17^{7} + \left(6 a + 15\right)\cdot 17^{8} + \left(4 a + 8\right)\cdot 17^{9} + \left(13 a + 10\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 16 + \left(15 a + 2\right)\cdot 17 + \left(8 a + 4\right)\cdot 17^{2} + \left(12 a + 5\right)\cdot 17^{3} + \left(16 a + 12\right)\cdot 17^{4} + \left(16 a + 8\right)\cdot 17^{5} + \left(16 a + 6\right)\cdot 17^{6} + \left(12 a + 7\right)\cdot 17^{7} + \left(7 a + 6\right)\cdot 17^{8} + \left(7 a + 7\right)\cdot 17^{9} + \left(8 a + 2\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 8 + 16\cdot 17 + 4\cdot 17^{2} + 3\cdot 17^{3} + 5\cdot 17^{4} + 6\cdot 17^{5} + 10\cdot 17^{6} + 6\cdot 17^{7} + 3\cdot 17^{8} + 17^{9} + 14\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 4 + 13\cdot 17 + 9\cdot 17^{2} + 10\cdot 17^{3} + 2\cdot 17^{4} + 2\cdot 17^{5} + 16\cdot 17^{6} + 12\cdot 17^{7} + 12\cdot 17^{8} + 2\cdot 17^{9} + 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 14 + \left(a + 3\right)\cdot 17 + \left(8 a + 14\right)\cdot 17^{2} + \left(4 a + 8\right)\cdot 17^{3} + 16\cdot 17^{4} + 8\cdot 17^{5} + 6\cdot 17^{6} + \left(4 a + 3\right)\cdot 17^{7} + \left(9 a + 1\right)\cdot 17^{8} + \left(9 a + 7\right)\cdot 17^{9} + \left(8 a + 3\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)$
$(1,2)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-3$
$3$ $2$ $(1,2)$ $1$
$3$ $2$ $(1,2)(4,5)$ $-1$
$6$ $2$ $(3,4)(5,6)$ $-1$
$6$ $2$ $(1,2)(3,4)(5,6)$ $1$
$8$ $3$ $(1,4,3)(2,5,6)$ $0$
$6$ $4$ $(1,5,2,4)$ $-1$
$6$ $4$ $(1,2)(3,5,6,4)$ $1$
$8$ $6$ $(1,5,6,2,4,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.