Properties

Label 3.2e4_563.4t5.2
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 563 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$9008= 2^{4} \cdot 563 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - x^{2} - 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 251 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 34 + 157\cdot 251 + 29\cdot 251^{2} + 92\cdot 251^{3} + 146\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 129 + 73\cdot 251 + 170\cdot 251^{2} + 250\cdot 251^{3} + 26\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 136 + 7\cdot 251 + 54\cdot 251^{2} + 109\cdot 251^{3} + 31\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 205 + 12\cdot 251 + 248\cdot 251^{2} + 49\cdot 251^{3} + 46\cdot 251^{4} +O\left(251^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.