Properties

Label 3.2e4_53e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 53^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$44944= 2^{4} \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} + 4 x^{3} + x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 33 + \left(20 a + 1\right)\cdot 41 + \left(25 a + 8\right)\cdot 41^{2} + 35 a\cdot 41^{3} + \left(19 a + 33\right)\cdot 41^{4} + \left(15 a + 26\right)\cdot 41^{5} + \left(18 a + 4\right)\cdot 41^{6} + 37\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 17 + \left(3 a + 26\right)\cdot 41 + \left(14 a + 20\right)\cdot 41^{2} + \left(22 a + 1\right)\cdot 41^{3} + \left(37 a + 16\right)\cdot 41^{4} + \left(24 a + 10\right)\cdot 41^{5} + \left(38 a + 40\right)\cdot 41^{6} + \left(20 a + 38\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 34 + 38\cdot 41 + 33\cdot 41^{2} + 29\cdot 41^{3} + 29\cdot 41^{4} + 40\cdot 41^{5} + 17\cdot 41^{6} + 19\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 35 + 36\cdot 41 + 18\cdot 41^{2} + 37\cdot 41^{3} + 3\cdot 41^{4} + 26\cdot 41^{5} + 7\cdot 41^{6} + 26\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 22 + \left(20 a + 11\right)\cdot 41 + \left(15 a + 23\right)\cdot 41^{2} + \left(5 a + 40\right)\cdot 41^{3} + \left(21 a + 15\right)\cdot 41^{4} + \left(25 a + 12\right)\cdot 41^{5} + \left(22 a + 3\right)\cdot 41^{6} + \left(40 a + 20\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 25 + \left(37 a + 7\right)\cdot 41 + \left(26 a + 18\right)\cdot 41^{2} + \left(18 a + 13\right)\cdot 41^{3} + \left(3 a + 24\right)\cdot 41^{4} + \left(16 a + 6\right)\cdot 41^{5} + \left(2 a + 8\right)\cdot 41^{6} + \left(20 a + 22\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,2,3)(4,6,5)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-3$
$3$ $2$ $(1,6)(3,4)$ $-1$
$3$ $2$ $(1,6)$ $1$
$6$ $2$ $(1,3)(4,6)$ $-1$
$6$ $2$ $(1,6)(2,3)(4,5)$ $1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(1,4,6,3)$ $-1$
$6$ $4$ $(1,4,6,3)(2,5)$ $1$
$8$ $6$ $(1,4,5,6,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.