Properties

Label 3.2e4_433.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 433 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$6928= 2^{4} \cdot 433 $
Artin number field: Splitting field of $f= x^{4} - 5 x^{2} - 2 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.2e2_433.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 229 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 52 + 107\cdot 229 + 83\cdot 229^{2} + 211\cdot 229^{3} + 225\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 + 57\cdot 229 + 29\cdot 229^{2} + 88\cdot 229^{3} + 26\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 122 + 15\cdot 229 + 126\cdot 229^{2} + 132\cdot 229^{3} + 47\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 220 + 48\cdot 229 + 219\cdot 229^{2} + 25\cdot 229^{3} + 158\cdot 229^{4} +O\left(229^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.