Properties

Label 3.2e4_3e6.6t8.3
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 3^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$11664= 2^{4} \cdot 3^{6} $
Artin number field: Splitting field of $f= x^{6} - 12 x^{3} + 18 x + 30 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 34\cdot 37 + 8\cdot 37^{2} + 8\cdot 37^{3} + 10\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 10 + 2 a\cdot 37 + \left(a + 8\right)\cdot 37^{2} + \left(9 a + 9\right)\cdot 37^{3} + \left(21 a + 5\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 34 a + 10 + \left(14 a + 23\right)\cdot 37 + \left(4 a + 13\right)\cdot 37^{2} + \left(11 a + 27\right)\cdot 37^{3} + \left(30 a + 20\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 13 + \left(34 a + 36\right)\cdot 37 + \left(35 a + 9\right)\cdot 37^{2} + \left(27 a + 7\right)\cdot 37^{3} + \left(15 a + 7\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 35 + \left(22 a + 11\right)\cdot 37 + \left(32 a + 16\right)\cdot 37^{2} + \left(25 a + 30\right)\cdot 37^{3} + \left(6 a + 19\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 + 5\cdot 37 + 17\cdot 37^{2} + 28\cdot 37^{3} + 10\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6,3)$
$(1,4,5)(2,3,6)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,6)(3,5)$ $-1$
$6$ $2$ $(1,5)(2,4)(3,6)$ $-1$
$8$ $3$ $(1,4,5)(2,3,6)$ $0$
$6$ $4$ $(1,5,6,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.