Properties

Label 3.2e4_3e5_13e2.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 3^{5} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$657072= 2^{4} \cdot 3^{5} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{4} - 24 x^{2} - 52 x - 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 6\cdot 19 + 3\cdot 19^{2} + 11\cdot 19^{3} + 18\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 16\cdot 19 + 16\cdot 19^{2} + 13\cdot 19^{3} + 14\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 6\cdot 19 + 5\cdot 19^{2} + 12\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 + 8\cdot 19 + 12\cdot 19^{2} + 12\cdot 19^{3} + 11\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.