Properties

Label 3.2e4_3e5_13e2.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 3^{5} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$657072= 2^{4} \cdot 3^{5} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{4} - 6 x^{2} - 26 x - 30 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 21 + 6\cdot 79 + 49\cdot 79^{2} + 57\cdot 79^{3} + 12\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 + 15\cdot 79 + 60\cdot 79^{2} + 70\cdot 79^{3} + 27\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 + 36\cdot 79 + 19\cdot 79^{2} + 44\cdot 79^{3} + 54\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 54 + 20\cdot 79 + 29\cdot 79^{2} + 64\cdot 79^{3} + 62\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.