Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 379 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 87 + 178\cdot 379 + 58\cdot 379^{2} + 322\cdot 379^{3} + 369\cdot 379^{4} +O\left(379^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 149 + 144\cdot 379 + 5\cdot 379^{2} + 107\cdot 379^{3} + 158\cdot 379^{4} +O\left(379^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 225 + 115\cdot 379 + 220\cdot 379^{2} + 184\cdot 379^{3} + 160\cdot 379^{4} +O\left(379^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 299 + 319\cdot 379 + 94\cdot 379^{2} + 144\cdot 379^{3} + 69\cdot 379^{4} +O\left(379^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.