Properties

Label 3.2e4_3e4_31e2.6t8.4
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 3^{4} \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1245456= 2^{4} \cdot 3^{4} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 30 x + 39 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 20\cdot 109 + 4\cdot 109^{2} + 85\cdot 109^{3} + 21\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 + 87\cdot 109 + 20\cdot 109^{2} + 80\cdot 109^{3} + 57\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 67 + 46\cdot 109 + 90\cdot 109^{2} + 90\cdot 109^{3} + 92\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 95 + 63\cdot 109 + 102\cdot 109^{2} + 70\cdot 109^{3} + 45\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.