Properties

Label 3.2e4_3e4_13e3.4t5.2
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 3^{4} \cdot 13^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$2847312= 2^{4} \cdot 3^{4} \cdot 13^{3} $
Artin number field: Splitting field of $f= x^{4} - 26 x + 390 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 313 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 94 + 32\cdot 313 + 286\cdot 313^{2} + 301\cdot 313^{3} + 282\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 96 + 141\cdot 313 + 90\cdot 313^{2} + 237\cdot 313^{3} + 125\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 191 + 107\cdot 313 + 212\cdot 313^{2} + 5\cdot 313^{3} + 104\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 245 + 31\cdot 313 + 37\cdot 313^{2} + 81\cdot 313^{3} + 113\cdot 313^{4} +O\left(313^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.