Properties

Label 3.2e4_3e4_11.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 3^{4} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$14256= 2^{4} \cdot 3^{4} \cdot 11 $
Artin number field: Splitting field of $f= x^{6} + 9 x^{4} + 12 x^{2} - 44 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 11 + \left(9 a + 12\right)\cdot 19 + \left(16 a + 15\right)\cdot 19^{2} + \left(10 a + 2\right)\cdot 19^{3} + \left(12 a + 18\right)\cdot 19^{4} + \left(6 a + 2\right)\cdot 19^{5} + \left(a + 12\right)\cdot 19^{6} + \left(17 a + 1\right)\cdot 19^{7} + \left(14 a + 1\right)\cdot 19^{8} + \left(3 a + 15\right)\cdot 19^{9} + \left(17 a + 2\right)\cdot 19^{10} + \left(a + 17\right)\cdot 19^{11} + \left(10 a + 14\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 7 + 13\cdot 19 + 11\cdot 19^{2} + 19^{3} + 10\cdot 19^{4} + 6\cdot 19^{5} + 9\cdot 19^{6} + 14\cdot 19^{7} + 18\cdot 19^{8} + 18\cdot 19^{9} + 10\cdot 19^{10} + 13\cdot 19^{11} + 14\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 2 + \left(17 a + 8\right)\cdot 19 + \left(15 a + 10\right)\cdot 19^{2} + \left(16 a + 18\right)\cdot 19^{3} + \left(13 a + 10\right)\cdot 19^{4} + \left(15 a + 8\right)\cdot 19^{5} + \left(15 a + 9\right)\cdot 19^{6} + \left(18 a + 17\right)\cdot 19^{7} + 16 a\cdot 19^{8} + \left(17 a + 9\right)\cdot 19^{9} + \left(15 a + 10\right)\cdot 19^{10} + \left(10 a + 2\right)\cdot 19^{11} + \left(2 a + 4\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 8 + \left(9 a + 6\right)\cdot 19 + \left(2 a + 3\right)\cdot 19^{2} + \left(8 a + 16\right)\cdot 19^{3} + 6 a\cdot 19^{4} + \left(12 a + 16\right)\cdot 19^{5} + \left(17 a + 6\right)\cdot 19^{6} + \left(a + 17\right)\cdot 19^{7} + \left(4 a + 17\right)\cdot 19^{8} + \left(15 a + 3\right)\cdot 19^{9} + \left(a + 16\right)\cdot 19^{10} + \left(17 a + 1\right)\cdot 19^{11} + \left(8 a + 4\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 12 + 5\cdot 19 + 7\cdot 19^{2} + 17\cdot 19^{3} + 8\cdot 19^{4} + 12\cdot 19^{5} + 9\cdot 19^{6} + 4\cdot 19^{7} + 8\cdot 19^{10} + 5\cdot 19^{11} + 4\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 17 + \left(a + 10\right)\cdot 19 + \left(3 a + 8\right)\cdot 19^{2} + 2 a\cdot 19^{3} + \left(5 a + 8\right)\cdot 19^{4} + \left(3 a + 10\right)\cdot 19^{5} + \left(3 a + 9\right)\cdot 19^{6} + 19^{7} + \left(2 a + 18\right)\cdot 19^{8} + \left(a + 9\right)\cdot 19^{9} + \left(3 a + 8\right)\cdot 19^{10} + \left(8 a + 16\right)\cdot 19^{11} + \left(16 a + 14\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(1,4)(3,6)$ $-1$
$3$ $2$ $(1,4)$ $1$
$6$ $2$ $(1,3)(4,6)$ $-1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $1$
$8$ $3$ $(1,3,2)(4,6,5)$ $0$
$6$ $4$ $(1,3,4,6)$ $-1$
$6$ $4$ $(1,5,4,2)(3,6)$ $1$
$8$ $6$ $(1,6,5,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.