Properties

Label 3.2e4_3e3_83.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 3^{3} \cdot 83 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$35856= 2^{4} \cdot 3^{3} \cdot 83 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 23 x^{4} - 24 x^{3} + 54 x^{2} - 272 x - 428 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.3_83.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 32 + \left(17 a + 9\right)\cdot 53 + \left(31 a + 6\right)\cdot 53^{2} + \left(22 a + 32\right)\cdot 53^{3} + \left(3 a + 6\right)\cdot 53^{4} + \left(45 a + 42\right)\cdot 53^{5} + \left(45 a + 28\right)\cdot 53^{6} + \left(19 a + 19\right)\cdot 53^{7} + 43 a\cdot 53^{8} + 12\cdot 53^{9} + \left(43 a + 4\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 51 + \left(23 a + 25\right)\cdot 53 + \left(37 a + 10\right)\cdot 53^{2} + \left(36 a + 50\right)\cdot 53^{3} + \left(15 a + 27\right)\cdot 53^{4} + \left(13 a + 42\right)\cdot 53^{5} + \left(23 a + 28\right)\cdot 53^{6} + \left(50 a + 38\right)\cdot 53^{7} + \left(37 a + 52\right)\cdot 53^{8} + \left(42 a + 38\right)\cdot 53^{9} + \left(2 a + 14\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 47 a + 22 + \left(29 a + 6\right)\cdot 53 + \left(15 a + 31\right)\cdot 53^{2} + 16 a\cdot 53^{3} + \left(37 a + 1\right)\cdot 53^{4} + \left(39 a + 27\right)\cdot 53^{5} + \left(29 a + 2\right)\cdot 53^{6} + \left(2 a + 5\right)\cdot 53^{7} + \left(15 a + 48\right)\cdot 53^{8} + \left(10 a + 12\right)\cdot 53^{9} + \left(50 a + 36\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 50 + \left(35 a + 48\right)\cdot 53 + \left(21 a + 7\right)\cdot 53^{2} + \left(30 a + 38\right)\cdot 53^{3} + \left(49 a + 50\right)\cdot 53^{4} + \left(7 a + 6\right)\cdot 53^{5} + \left(7 a + 8\right)\cdot 53^{6} + 33 a\cdot 53^{7} + \left(9 a + 48\right)\cdot 53^{8} + \left(52 a + 24\right)\cdot 53^{9} + \left(9 a + 16\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 6 + 32\cdot 53 + 5\cdot 53^{2} + 37\cdot 53^{3} + 14\cdot 53^{4} + 12\cdot 53^{5} + 48\cdot 53^{6} + 39\cdot 53^{7} + 17\cdot 53^{8} + 50\cdot 53^{9} + 39\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 52 + 35\cdot 53 + 44\cdot 53^{2} + 5\cdot 53^{4} + 28\cdot 53^{5} + 42\cdot 53^{6} + 2\cdot 53^{7} + 45\cdot 53^{8} + 19\cdot 53^{9} + 47\cdot 53^{10} +O\left(53^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)$
$(1,3,5)(2,4,6)$
$(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,4)(5,6)$$-3$
$3$$2$$(3,4)$$1$
$3$$2$$(3,4)(5,6)$$-1$
$6$$2$$(1,5)(2,6)$$-1$
$6$$2$$(1,5)(2,6)(3,4)$$1$
$8$$3$$(1,3,5)(2,4,6)$$0$
$6$$4$$(3,6,4,5)$$-1$
$6$$4$$(1,2)(3,6,4,5)$$1$
$8$$6$$(1,3,6,2,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.