Properties

Label 3.2e4_3e3_7e2_11.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$232848= 2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 28 x^{4} + 36 x^{3} + 294 x^{2} - 250 x - 854 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 79 a + 25 + \left(82 a + 67\right)\cdot 103 + \left(24 a + 4\right)\cdot 103^{2} + \left(47 a + 4\right)\cdot 103^{3} + \left(62 a + 30\right)\cdot 103^{4} + \left(92 a + 30\right)\cdot 103^{5} + \left(67 a + 94\right)\cdot 103^{6} + \left(2 a + 65\right)\cdot 103^{7} + \left(33 a + 30\right)\cdot 103^{8} +O\left(103^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 1 + \left(20 a + 71\right)\cdot 103 + \left(78 a + 49\right)\cdot 103^{2} + \left(55 a + 26\right)\cdot 103^{3} + \left(40 a + 45\right)\cdot 103^{4} + \left(10 a + 60\right)\cdot 103^{5} + \left(35 a + 69\right)\cdot 103^{6} + 100 a\cdot 103^{7} + \left(69 a + 61\right)\cdot 103^{8} +O\left(103^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 70 + \left(87 a + 67\right)\cdot 103 + \left(a + 94\right)\cdot 103^{2} + \left(53 a + 19\right)\cdot 103^{3} + \left(53 a + 42\right)\cdot 103^{4} + \left(98 a + 37\right)\cdot 103^{5} + \left(17 a + 43\right)\cdot 103^{6} + \left(a + 78\right)\cdot 103^{7} + \left(96 a + 23\right)\cdot 103^{8} +O\left(103^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 90 a + 83 + \left(15 a + 38\right)\cdot 103 + \left(101 a + 9\right)\cdot 103^{2} + \left(49 a + 71\right)\cdot 103^{3} + \left(49 a + 42\right)\cdot 103^{4} + \left(4 a + 82\right)\cdot 103^{5} + \left(85 a + 65\right)\cdot 103^{6} + \left(101 a + 61\right)\cdot 103^{7} + \left(6 a + 15\right)\cdot 103^{8} +O\left(103^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 78 + 52\cdot 103 + 28\cdot 103^{2} + 46\cdot 103^{3} + 92\cdot 103^{4} + 19\cdot 103^{5} + 23\cdot 103^{6} + 70\cdot 103^{7} + 21\cdot 103^{8} +O\left(103^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 54 + 11\cdot 103 + 19\cdot 103^{2} + 38\cdot 103^{3} + 56\cdot 103^{4} + 78\cdot 103^{5} + 12\cdot 103^{6} + 32\cdot 103^{7} + 53\cdot 103^{8} +O\left(103^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)$
$(1,5,3)(2,6,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$3$ $2$ $(3,4)$ $1$
$6$ $2$ $(1,3)(2,4)$ $-1$
$6$ $2$ $(1,2)(3,5)(4,6)$ $1$
$8$ $3$ $(1,5,3)(2,6,4)$ $0$
$6$ $4$ $(1,4,2,3)$ $-1$
$6$ $4$ $(1,2)(3,6,4,5)$ $1$
$8$ $6$ $(1,5,3,2,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.