Properties

Label 3.2e4_3e3_7e2.6t11.9c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 3^{3} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$21168= 2^{4} \cdot 3^{3} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{6} - 3 x^{4} + 12 x^{3} + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{3} + 6 x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 13 a^{2} + 14 a + 26 + \left(2 a^{2} + 8 a + 35\right)\cdot 37 + \left(36 a^{2} + 34 a + 26\right)\cdot 37^{2} + \left(19 a^{2} + 32 a + 35\right)\cdot 37^{3} + \left(26 a^{2} + 16 a + 18\right)\cdot 37^{4} + \left(34 a^{2} + 22 a + 1\right)\cdot 37^{5} + \left(36 a^{2} + 33 a + 7\right)\cdot 37^{6} + \left(30 a^{2} + 12 a + 33\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 25 + 3\cdot 37 + 21\cdot 37^{2} + 12\cdot 37^{3} + 28\cdot 37^{4} + 19\cdot 37^{5} + 22\cdot 37^{6} + 11\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 2 a^{2} + 25 a + 7 + \left(34 a^{2} + 21 a + 1\right)\cdot 37 + \left(8 a^{2} + 5 a + 34\right)\cdot 37^{2} + \left(15 a^{2} + 15 a + 12\right)\cdot 37^{3} + \left(9 a^{2} + 28 a + 16\right)\cdot 37^{4} + \left(30 a^{2} + 11 a + 29\right)\cdot 37^{5} + \left(12 a^{2} + 7 a + 10\right)\cdot 37^{6} + \left(31 a^{2} + 30 a\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 16 a^{2} + 20 a + 26 + \left(2 a^{2} + 7 a + 22\right)\cdot 37 + \left(20 a^{2} + 4\right)\cdot 37^{2} + \left(34 a^{2} + 20 a + 16\right)\cdot 37^{3} + \left(8 a^{2} + a + 14\right)\cdot 37^{4} + \left(24 a^{2} + 3 a + 5\right)\cdot 37^{5} + \left(a^{2} + 9 a + 3\right)\cdot 37^{6} + \left(14 a^{2} + 23 a + 5\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 21 + 26\cdot 37 + 2\cdot 37^{2} + 5\cdot 37^{3} + 37^{4} + 37^{5} + 3\cdot 37^{6} + 7\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 19 a^{2} + 29 a + 1 + \left(7 a + 15\right)\cdot 37 + \left(8 a^{2} + 31 a + 30\right)\cdot 37^{2} + \left(24 a^{2} + a + 11\right)\cdot 37^{3} + \left(18 a^{2} + 7 a + 16\right)\cdot 37^{4} + \left(19 a^{2} + 22 a + 23\right)\cdot 37^{5} + \left(22 a^{2} + 20 a + 12\right)\cdot 37^{6} + \left(28 a^{2} + 20 a + 26\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 15 a^{2} + 21 a + 34 + \left(27 a^{2} + 13 a + 24\right)\cdot 37 + \left(22 a^{2} + 17 a + 10\right)\cdot 37^{2} + \left(2 a^{2} + 19 a + 3\right)\cdot 37^{3} + \left(13 a^{2} + 29 a + 2\right)\cdot 37^{4} + \left(21 a^{2} + 16 a + 22\right)\cdot 37^{5} + \left(19 a^{2} + 11 a + 11\right)\cdot 37^{6} + \left(13 a^{2} + 29 a\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 9 a^{2} + 2 a + 10 + \left(7 a^{2} + 15 a + 18\right)\cdot 37 + \left(15 a^{2} + 22 a + 17\right)\cdot 37^{2} + \left(14 a^{2} + 21 a + 13\right)\cdot 37^{3} + \left(34 a^{2} + 27 a + 13\right)\cdot 37^{4} + \left(17 a^{2} + 34 a + 8\right)\cdot 37^{5} + \left(17 a^{2} + 28 a + 3\right)\cdot 37^{6} + \left(29 a^{2} + 31 a + 27\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4)(5,8)$
$(1,2)(3,7)(4,8)(5,6)$
$(2,3)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,7)(4,8)$$-3$
$3$$2$$(1,5)(2,6)(3,4)(7,8)$$-1$
$3$$2$$(1,4)(2,7)(3,5)(6,8)$$1$
$6$$2$$(1,2)(3,7)(4,8)(5,6)$$1$
$6$$2$$(1,8)(4,6)$$-1$
$8$$3$$(1,5,8)(2,4,6)$$0$
$6$$4$$(1,4,5,3)(2,7,6,8)$$-1$
$6$$4$$(1,5,7,8)(2,3,4,6)$$1$
$8$$6$$(1,4,5,6,8,2)(3,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.