Properties

Label 3.2e4_3e3_7e2.6t11.5
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 3^{3} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$21168= 2^{4} \cdot 3^{3} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 2 x^{3} - 3 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 61 a + 53 + \left(47 a + 59\right)\cdot 67 + \left(61 a + 65\right)\cdot 67^{2} + \left(44 a + 50\right)\cdot 67^{3} + \left(22 a + 21\right)\cdot 67^{4} + \left(16 a + 28\right)\cdot 67^{5} + \left(54 a + 47\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 18 + \left(61 a + 45\right)\cdot 67 + \left(10 a + 28\right)\cdot 67^{2} + \left(7 a + 25\right)\cdot 67^{3} + \left(44 a + 24\right)\cdot 67^{4} + \left(37 a + 14\right)\cdot 67^{5} + \left(40 a + 56\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 20 + 54\cdot 67 + 44\cdot 67^{2} + 27\cdot 67^{3} + 39\cdot 67^{4} + 17\cdot 67^{5} + 63\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 57 + 63\cdot 67 + 53\cdot 67^{2} + 18\cdot 67^{3} + 55\cdot 67^{4} + 15\cdot 67^{5} + 7\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 24 + \left(5 a + 55\right)\cdot 67 + \left(56 a + 10\right)\cdot 67^{2} + \left(59 a + 43\right)\cdot 67^{3} + \left(22 a + 59\right)\cdot 67^{4} + \left(29 a + 53\right)\cdot 67^{5} + \left(26 a + 46\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 29 + \left(19 a + 56\right)\cdot 67 + \left(5 a + 63\right)\cdot 67^{2} + \left(22 a + 34\right)\cdot 67^{3} + 44 a\cdot 67^{4} + \left(50 a + 4\right)\cdot 67^{5} + \left(12 a + 47\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,2,3)(4,6,5)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-3$
$3$ $2$ $(1,6)(3,4)$ $-1$
$3$ $2$ $(1,6)$ $1$
$6$ $2$ $(1,3)(4,6)$ $-1$
$6$ $2$ $(1,6)(2,3)(4,5)$ $1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(1,4,6,3)$ $-1$
$6$ $4$ $(1,4,6,3)(2,5)$ $1$
$8$ $6$ $(1,4,5,6,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.