Properties

Label 3.2e4_3e3_251e2.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 3^{3} \cdot 251^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$27216432= 2^{4} \cdot 3^{3} \cdot 251^{2} $
Artin number field: Splitting field of $f= x^{6} + 11 x^{4} + 36 x^{2} + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 6 + 18\cdot 61 + 32\cdot 61^{2} + 41\cdot 61^{3} + 51\cdot 61^{4} + 43\cdot 61^{5} + 50\cdot 61^{6} + 57\cdot 61^{7} + 26\cdot 61^{8} + 40\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 51 a + 55 + \left(35 a + 4\right)\cdot 61 + \left(2 a + 52\right)\cdot 61^{2} + \left(56 a + 27\right)\cdot 61^{3} + \left(10 a + 2\right)\cdot 61^{4} + \left(32 a + 47\right)\cdot 61^{5} + \left(50 a + 19\right)\cdot 61^{6} + \left(9 a + 4\right)\cdot 61^{7} + \left(22 a + 3\right)\cdot 61^{8} + \left(12 a + 53\right)\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 45 + \left(25 a + 50\right)\cdot 61 + \left(58 a + 18\right)\cdot 61^{2} + \left(4 a + 20\right)\cdot 61^{3} + \left(50 a + 18\right)\cdot 61^{4} + \left(28 a + 7\right)\cdot 61^{5} + \left(10 a + 38\right)\cdot 61^{6} + \left(51 a + 24\right)\cdot 61^{7} + \left(38 a + 15\right)\cdot 61^{8} + \left(48 a + 43\right)\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 55 + 42\cdot 61 + 28\cdot 61^{2} + 19\cdot 61^{3} + 9\cdot 61^{4} + 17\cdot 61^{5} + 10\cdot 61^{6} + 3\cdot 61^{7} + 34\cdot 61^{8} + 20\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 6 + \left(25 a + 56\right)\cdot 61 + \left(58 a + 8\right)\cdot 61^{2} + \left(4 a + 33\right)\cdot 61^{3} + \left(50 a + 58\right)\cdot 61^{4} + \left(28 a + 13\right)\cdot 61^{5} + \left(10 a + 41\right)\cdot 61^{6} + \left(51 a + 56\right)\cdot 61^{7} + \left(38 a + 57\right)\cdot 61^{8} + \left(48 a + 7\right)\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 51 a + 16 + \left(35 a + 10\right)\cdot 61 + \left(2 a + 42\right)\cdot 61^{2} + \left(56 a + 40\right)\cdot 61^{3} + \left(10 a + 42\right)\cdot 61^{4} + \left(32 a + 53\right)\cdot 61^{5} + \left(50 a + 22\right)\cdot 61^{6} + \left(9 a + 36\right)\cdot 61^{7} + \left(22 a + 45\right)\cdot 61^{8} + \left(12 a + 17\right)\cdot 61^{9} +O\left(61^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)(3,6)$$-1$
$3$$2$$(1,4)$$1$
$6$$2$$(1,3)(4,6)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,3,4,6)$$-1$
$6$$4$$(1,5,4,2)(3,6)$$1$
$8$$6$$(1,6,5,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.