Properties

Label 3.2e4_3e3_251e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 3^{3} \cdot 251^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$27216432= 2^{4} \cdot 3^{3} \cdot 251^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 79 x^{4} + 394 x^{3} - 973 x^{2} + 994 x - 1706 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 16 + \left(26 a + 1\right)\cdot 41 + \left(21 a + 38\right)\cdot 41^{2} + \left(18 a + 25\right)\cdot 41^{3} + \left(34 a + 20\right)\cdot 41^{4} + \left(26 a + 40\right)\cdot 41^{5} + \left(17 a + 34\right)\cdot 41^{6} + \left(29 a + 19\right)\cdot 41^{7} + \left(21 a + 4\right)\cdot 41^{8} + \left(37 a + 19\right)\cdot 41^{9} + \left(38 a + 35\right)\cdot 41^{10} + \left(17 a + 5\right)\cdot 41^{11} + \left(27 a + 1\right)\cdot 41^{12} + 30\cdot 41^{13} + \left(10 a + 22\right)\cdot 41^{14} + \left(10 a + 34\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 37 a + 32 + \left(20 a + 24\right)\cdot 41 + \left(14 a + 26\right)\cdot 41^{2} + \left(39 a + 31\right)\cdot 41^{3} + \left(16 a + 21\right)\cdot 41^{4} + \left(16 a + 10\right)\cdot 41^{5} + \left(25 a + 7\right)\cdot 41^{6} + \left(27 a + 12\right)\cdot 41^{7} + \left(22 a + 39\right)\cdot 41^{8} + 28 a\cdot 41^{9} + \left(7 a + 14\right)\cdot 41^{10} + \left(13 a + 34\right)\cdot 41^{11} + \left(2 a + 15\right)\cdot 41^{12} + \left(28 a + 7\right)\cdot 41^{13} + \left(40 a + 7\right)\cdot 41^{14} + \left(37 a + 27\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 2 + 4\cdot 41 + 35\cdot 41^{2} + 4\cdot 41^{3} + 19\cdot 41^{4} + 11\cdot 41^{6} + 16\cdot 41^{7} + 31\cdot 41^{8} + 34\cdot 41^{9} + 25\cdot 41^{10} + 4\cdot 41^{11} + 8\cdot 41^{12} + 17\cdot 41^{13} + 22\cdot 41^{14} + 13\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 20 + 22\cdot 41 + 20\cdot 41^{2} + 29\cdot 41^{3} + 4\cdot 41^{4} + 24\cdot 41^{5} + 23\cdot 41^{6} + 37\cdot 41^{7} + 9\cdot 41^{8} + 17\cdot 41^{9} + 6\cdot 41^{10} + 32\cdot 41^{11} + 22\cdot 41^{12} + 15\cdot 41^{13} + 40\cdot 41^{14} + 14\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 35 + \left(14 a + 19\right)\cdot 41 + \left(19 a + 35\right)\cdot 41^{2} + \left(22 a + 18\right)\cdot 41^{3} + \left(6 a + 23\right)\cdot 41^{4} + \left(14 a + 4\right)\cdot 41^{5} + \left(23 a + 20\right)\cdot 41^{6} + \left(11 a + 8\right)\cdot 41^{7} + \left(19 a + 40\right)\cdot 41^{8} + \left(3 a + 27\right)\cdot 41^{9} + \left(2 a + 32\right)\cdot 41^{10} + \left(23 a + 20\right)\cdot 41^{11} + \left(13 a + 24\right)\cdot 41^{12} + \left(40 a + 4\right)\cdot 41^{13} + \left(30 a + 11\right)\cdot 41^{14} + \left(30 a + 14\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 20 + \left(20 a + 9\right)\cdot 41 + \left(26 a + 8\right)\cdot 41^{2} + \left(a + 12\right)\cdot 41^{3} + \left(24 a + 33\right)\cdot 41^{4} + \left(24 a + 1\right)\cdot 41^{5} + \left(15 a + 26\right)\cdot 41^{6} + \left(13 a + 28\right)\cdot 41^{7} + \left(18 a + 38\right)\cdot 41^{8} + \left(12 a + 22\right)\cdot 41^{9} + \left(33 a + 8\right)\cdot 41^{10} + \left(27 a + 25\right)\cdot 41^{11} + \left(38 a + 9\right)\cdot 41^{12} + \left(12 a + 7\right)\cdot 41^{13} + 19\cdot 41^{14} + \left(3 a + 18\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)$
$(1,5,3)(2,6,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$3$ $2$ $(5,6)$ $1$
$3$ $2$ $(3,4)(5,6)$ $-1$
$6$ $2$ $(1,3)(2,4)$ $1$
$6$ $2$ $(1,3)(2,4)(5,6)$ $-1$
$8$ $3$ $(1,5,3)(2,6,4)$ $0$
$6$ $4$ $(3,5,4,6)$ $1$
$6$ $4$ $(1,2)(3,5,4,6)$ $-1$
$8$ $6$ $(1,5,4,2,6,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.