Properties

Label 3.2e4_3e2_7e2_17.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$119952= 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 11 x^{4} + 12 x^{3} + 53 x^{2} - 51 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 32 a + 7 + \left(24 a + 65\right)\cdot 67 + \left(54 a + 58\right)\cdot 67^{2} + \left(17 a + 13\right)\cdot 67^{3} + \left(57 a + 21\right)\cdot 67^{4} + \left(38 a + 64\right)\cdot 67^{5} + \left(47 a + 20\right)\cdot 67^{6} + \left(37 a + 27\right)\cdot 67^{7} + \left(54 a + 50\right)\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 9 + 48\cdot 67 + 34\cdot 67^{2} + 42\cdot 67^{3} + 48\cdot 67^{4} + 43\cdot 67^{5} + 17\cdot 67^{6} + 5\cdot 67^{7} + 49\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 36 + 58\cdot 67 + 44\cdot 67^{2} + 25\cdot 67^{3} + 10\cdot 67^{4} + 61\cdot 67^{5} + 14\cdot 67^{6} + 3\cdot 67^{7} + 45\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 35 a + 1 + \left(42 a + 64\right)\cdot 67 + \left(12 a + 50\right)\cdot 67^{2} + \left(49 a + 30\right)\cdot 67^{3} + \left(9 a + 31\right)\cdot 67^{4} + \left(28 a + 28\right)\cdot 67^{5} + \left(19 a + 38\right)\cdot 67^{6} + \left(29 a + 63\right)\cdot 67^{7} + \left(12 a + 29\right)\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 42 a + 58 + \left(44 a + 14\right)\cdot 67 + \left(47 a + 33\right)\cdot 67^{2} + \left(40 a + 53\right)\cdot 67^{3} + \left(34 a + 62\right)\cdot 67^{4} + \left(53 a + 45\right)\cdot 67^{5} + \left(7 a + 65\right)\cdot 67^{6} + \left(49 a + 56\right)\cdot 67^{7} + \left(60 a + 16\right)\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 25 + \left(22 a + 17\right)\cdot 67 + \left(19 a + 45\right)\cdot 67^{2} + \left(26 a + 34\right)\cdot 67^{3} + \left(32 a + 26\right)\cdot 67^{4} + \left(13 a + 24\right)\cdot 67^{5} + \left(59 a + 43\right)\cdot 67^{6} + \left(17 a + 44\right)\cdot 67^{7} + \left(6 a + 9\right)\cdot 67^{8} +O\left(67^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,2)(3,4,6)$
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,3)(5,6)$$-3$
$3$$2$$(5,6)$$1$
$3$$2$$(2,3)(5,6)$$-1$
$6$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)(3,4)(5,6)$$1$
$8$$3$$(1,5,2)(3,4,6)$$0$
$6$$4$$(2,5,3,6)$$-1$
$6$$4$$(1,4)(2,5,3,6)$$1$
$8$$6$$(1,5,3,4,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.