Properties

Label 3.2e4_3e2_5e2_37e2.6t8.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$4928400= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 20 x^{2} - 90 x - 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 1 + \left(10 a + 1\right)\cdot 23 + \left(18 a + 13\right)\cdot 23^{2} + \left(10 a + 18\right)\cdot 23^{3} + 22 a\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 14 + \left(12 a + 4\right)\cdot 23 + \left(4 a + 16\right)\cdot 23^{2} + \left(12 a + 21\right)\cdot 23^{3} + 11\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 + 2\cdot 23 + 6\cdot 23^{2} + 7\cdot 23^{3} + 19\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 + 14\cdot 23 + 10\cdot 23^{2} + 21\cdot 23^{3} + 13\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.