Properties

Label 3.2e4_3e2_5e2.6t8.2
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$3600= 2^{4} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} + 2 x^{3} + x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 35 + \left(11 a + 35\right)\cdot 37 + \left(6 a + 20\right)\cdot 37^{2} + \left(28 a + 33\right)\cdot 37^{3} + \left(29 a + 31\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 a + 9 + 2\cdot 37 + \left(35 a + 33\right)\cdot 37^{2} + \left(9 a + 27\right)\cdot 37^{3} + \left(36 a + 32\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 34 + 2\cdot 37 + 7\cdot 37^{2} + 30\cdot 37^{3} + 36\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 + 24\cdot 37 + 27\cdot 37^{2} + 31\cdot 37^{3} + 14\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 2 + \left(36 a + 16\right)\cdot 37 + \left(a + 24\right)\cdot 37^{2} + \left(27 a + 32\right)\cdot 37^{3} + 19\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 21 + \left(25 a + 29\right)\cdot 37 + \left(30 a + 34\right)\cdot 37^{2} + \left(8 a + 28\right)\cdot 37^{3} + \left(7 a + 11\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,4)$
$(1,2,4)(3,6,5)$
$(1,3,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,6)(3,4)$ $-1$
$6$ $2$ $(1,6)(2,4)(3,5)$ $-1$
$8$ $3$ $(1,2,4)(3,6,5)$ $0$
$6$ $4$ $(1,3,6,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.