Properties

Label 3.2e4_3e2_251e2.6t8.3c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 251^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$9072144= 2^{4} \cdot 3^{2} \cdot 251^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 2 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 26\cdot 127 + 8\cdot 127^{2} + 2\cdot 127^{3} + 110\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 59 + 49\cdot 127 + 86\cdot 127^{2} + 106\cdot 127^{3} + 34\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 77 + 110\cdot 127 + 23\cdot 127^{2} + 4\cdot 127^{3} + 9\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 110 + 67\cdot 127 + 8\cdot 127^{2} + 14\cdot 127^{3} + 100\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.