Properties

Label 3.76176.6t8.b
Dimension $3$
Group $S_4$
Conductor $76176$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:\(76176\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 23^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.2.228528.2
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Projective image: $S_4$
Projective field: Galois closure of 4.2.228528.2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 367 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 65 + 54\cdot 367 + 318\cdot 367^{2} + 348\cdot 367^{3} + 228\cdot 367^{4} +O(367^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 119 + 328\cdot 367 + 350\cdot 367^{2} + 32\cdot 367^{3} + 76\cdot 367^{4} +O(367^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 201 + 68\cdot 367 + 186\cdot 367^{2} + 65\cdot 367^{3} + 105\cdot 367^{4} +O(367^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 349 + 282\cdot 367 + 245\cdot 367^{2} + 286\cdot 367^{3} + 323\cdot 367^{4} +O(367^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.