Properties

Label 3.2e4_3e2_19e3.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 19^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$987696= 2^{4} \cdot 3^{2} \cdot 19^{3} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 8 x^{2} - 48 x + 120 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 18\cdot 23 + 13\cdot 23^{3} + 18\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 17\cdot 23 + 6\cdot 23^{2} + 3\cdot 23^{3} + 18\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 2\cdot 23 + 10\cdot 23^{2} + 22\cdot 23^{3} + 12\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 + 7\cdot 23 + 5\cdot 23^{2} + 7\cdot 23^{3} + 19\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.