Properties

Label 3.39984.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $39984$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(39984\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{2} \cdot 17 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.39984.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.51.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.39984.1

Defining polynomial

$f(x)$$=$ \( x^{4} - 4x^{2} - 14x - 10 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 229 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 52 + 145\cdot 229 + 198\cdot 229^{2} + 219\cdot 229^{3} + 5\cdot 229^{4} +O(229^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 63 + 183\cdot 229 + 158\cdot 229^{2} + 210\cdot 229^{3} + 223\cdot 229^{4} +O(229^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 170 + 198\cdot 229 + 82\cdot 229^{2} + 121\cdot 229^{3} + 153\cdot 229^{4} +O(229^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 173 + 159\cdot 229 + 17\cdot 229^{2} + 135\cdot 229^{3} + 74\cdot 229^{4} +O(229^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$