Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 283 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 96 + 40\cdot 283 + 148\cdot 283^{2} + 245\cdot 283^{3} + 95\cdot 283^{4} +O\left(283^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 107 + 105\cdot 283 + 121\cdot 283^{2} + 88\cdot 283^{3} + 233\cdot 283^{4} +O\left(283^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 164 + 230\cdot 283 + 262\cdot 283^{2} + 42\cdot 283^{3} + 216\cdot 283^{4} +O\left(283^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 199 + 189\cdot 283 + 33\cdot 283^{2} + 189\cdot 283^{3} + 20\cdot 283^{4} +O\left(283^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.