Properties

Label 3.2e4_3_5e2_37e2.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 3 \cdot 5^{2} \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1642800= 2^{4} \cdot 3 \cdot 5^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - 24 x^{2} - 74 x - 78 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 18 + 95\cdot 103 + 9\cdot 103^{2} + 42\cdot 103^{3} + 61\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 72\cdot 103 + 20\cdot 103^{2} + 64\cdot 103^{3} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 + 29\cdot 103 + 96\cdot 103^{2} + 68\cdot 103^{3} + 83\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 86 + 8\cdot 103 + 79\cdot 103^{2} + 30\cdot 103^{3} + 60\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.