Properties

Label 3.2e4_3_19e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 3 \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$17328= 2^{4} \cdot 3 \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} + 6 x^{3} - 2 x^{2} - 6 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 3\cdot 29 + 7\cdot 29^{2} + 27\cdot 29^{3} + 22\cdot 29^{4} + 16\cdot 29^{5} + 17\cdot 29^{6} + 25\cdot 29^{7} + 13\cdot 29^{8} + 18\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 9 + 9\cdot 29 + 25\cdot 29^{2} + 7\cdot 29^{3} + 17\cdot 29^{4} + 20\cdot 29^{5} + 20\cdot 29^{6} + 26\cdot 29^{7} + 11\cdot 29^{8} +O\left(29^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 23 + 11\cdot 29 + \left(20 a + 10\right)\cdot 29^{2} + \left(17 a + 24\right)\cdot 29^{3} + \left(17 a + 27\right)\cdot 29^{4} + \left(16 a + 22\right)\cdot 29^{5} + \left(4 a + 5\right)\cdot 29^{6} + \left(14 a + 13\right)\cdot 29^{7} + \left(28 a + 25\right)\cdot 29^{8} + \left(8 a + 18\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 4 + 9 a\cdot 29 + \left(11 a + 16\right)\cdot 29^{2} + \left(16 a + 4\right)\cdot 29^{3} + \left(14 a + 19\right)\cdot 29^{4} + \left(20 a + 26\right)\cdot 29^{5} + \left(3 a + 1\right)\cdot 29^{6} + \left(20 a + 24\right)\cdot 29^{7} + \left(16 a + 10\right)\cdot 29^{8} + \left(21 a + 19\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 24 + \left(28 a + 6\right)\cdot 29 + \left(8 a + 23\right)\cdot 29^{2} + \left(11 a + 5\right)\cdot 29^{3} + \left(11 a + 11\right)\cdot 29^{4} + \left(12 a + 1\right)\cdot 29^{5} + \left(24 a + 12\right)\cdot 29^{6} + \left(14 a + 21\right)\cdot 29^{7} + 8\cdot 29^{8} + \left(20 a + 6\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 27 + \left(19 a + 26\right)\cdot 29 + \left(17 a + 4\right)\cdot 29^{2} + \left(12 a + 17\right)\cdot 29^{3} + \left(14 a + 17\right)\cdot 29^{4} + \left(8 a + 27\right)\cdot 29^{5} + \left(25 a + 28\right)\cdot 29^{6} + \left(8 a + 4\right)\cdot 29^{7} + \left(12 a + 16\right)\cdot 29^{8} + \left(7 a + 23\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)$
$(1,5,3)(2,6,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,4)(5,6)$$-3$
$3$$2$$(1,2)$$1$
$3$$2$$(1,2)(5,6)$$-1$
$6$$2$$(3,5)(4,6)$$1$
$6$$2$$(1,2)(3,5)(4,6)$$-1$
$8$$3$$(1,5,3)(2,6,4)$$0$
$6$$4$$(1,6,2,5)$$1$
$6$$4$$(1,2)(3,6,4,5)$$-1$
$8$$6$$(1,6,4,2,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.