Properties

Label 3.2e4_3_19.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 3 \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$912= 2^{4} \cdot 3 \cdot 19 $
Artin number field: Splitting field of $f= x^{6} + x^{4} - 2 x^{3} + x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.3_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 51 a + 62 + \left(31 a + 21\right)\cdot 67 + \left(28 a + 32\right)\cdot 67^{2} + \left(14 a + 59\right)\cdot 67^{3} + \left(11 a + 63\right)\cdot 67^{4} + \left(63 a + 35\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 28 + 3\cdot 67 + 4\cdot 67^{2} + 35\cdot 67^{3} + 47\cdot 67^{4} + 46\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 49 a + 53 + \left(33 a + 40\right)\cdot 67 + \left(41 a + 13\right)\cdot 67^{2} + \left(52 a + 57\right)\cdot 67^{3} + \left(10 a + 4\right)\cdot 67^{4} + \left(22 a + 49\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 65 + \left(35 a + 30\right)\cdot 67 + \left(38 a + 47\right)\cdot 67^{2} + \left(52 a + 21\right)\cdot 67^{3} + \left(55 a + 27\right)\cdot 67^{4} + \left(3 a + 9\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 + 44\cdot 67 + 24\cdot 67^{2} + 2\cdot 67^{3} + 62\cdot 67^{4} + 66\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 18 a + 48 + \left(33 a + 59\right)\cdot 67 + \left(25 a + 11\right)\cdot 67^{2} + \left(14 a + 25\right)\cdot 67^{3} + \left(56 a + 62\right)\cdot 67^{4} + \left(44 a + 59\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(2,5)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(1,6)$$1$
$3$$2$$(1,6)(2,5)$$-1$
$6$$2$$(2,3)(4,5)$$1$
$6$$2$$(1,6)(2,3)(4,5)$$-1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,5,6,2)$$1$
$6$$4$$(1,4,6,3)(2,5)$$-1$
$8$$6$$(1,5,4,6,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.