Properties

Label 3.2e4_389.4t5.2
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 389 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$6224= 2^{4} \cdot 389 $
Artin number field: Splitting field of $f= x^{4} - 6 x^{2} - 2 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 16\cdot 157 + 26\cdot 157^{2} + 56\cdot 157^{3} + 47\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 83 + 48\cdot 157 + 47\cdot 157^{2} + 137\cdot 157^{3} + 127\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 101 + 47\cdot 157 + 104\cdot 157^{2} + 16\cdot 157^{3} + 135\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 126 + 44\cdot 157 + 136\cdot 157^{2} + 103\cdot 157^{3} + 3\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.