Properties

Label 3.2e4_389.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 389 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$6224= 2^{4} \cdot 389 $
Artin number field: Splitting field of $f= x^{4} + 4 x^{2} - 2 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.389.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 331 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 245\cdot 331 + 135\cdot 331^{2} + 173\cdot 331^{3} + 163\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 151 + 171\cdot 331^{2} + 329\cdot 331^{3} + 22\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 168 + 303\cdot 331 + 107\cdot 331^{2} + 56\cdot 331^{3} + 6\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 327 + 112\cdot 331 + 247\cdot 331^{2} + 102\cdot 331^{3} + 138\cdot 331^{4} +O\left(331^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.