Properties

Label 3.2e4_37e2.6t8.3c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$21904= 2^{4} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 20 x^{2} + 18 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 60\cdot 67 + 56\cdot 67^{2} + 66\cdot 67^{3} + 66\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 28\cdot 67 + 48\cdot 67^{2} + 4\cdot 67^{3} + 19\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 + 46\cdot 67 + 52\cdot 67^{2} + 21\cdot 67^{3} + 30\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 + 65\cdot 67 + 42\cdot 67^{2} + 40\cdot 67^{3} + 17\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.