Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 60 + 26\cdot 151 + 95\cdot 151^{2} + 134\cdot 151^{3} + 112\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 62 + 80\cdot 151 + 36\cdot 151^{2} + 92\cdot 151^{3} + 81\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 80 + 24\cdot 151 + 148\cdot 151^{2} + 86\cdot 151^{3} + 107\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 100 + 19\cdot 151 + 22\cdot 151^{2} + 139\cdot 151^{3} + 150\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $4$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $4$ |
$3$ |
$(1,3,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.