Properties

Label 3.2e4_229e2.6t11.4
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 229^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$839056= 2^{4} \cdot 229^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 9 x^{4} - 6 x^{3} + 45 x^{2} - 25 x + 125 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 7\cdot 37 + 21\cdot 37^{2} + 35\cdot 37^{3} + 15\cdot 37^{4} + 25\cdot 37^{5} + 15\cdot 37^{6} + 33\cdot 37^{7} + 25\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 8 + \left(36 a + 18\right)\cdot 37 + \left(19 a + 3\right)\cdot 37^{2} + \left(31 a + 21\right)\cdot 37^{3} + \left(36 a + 14\right)\cdot 37^{4} + \left(15 a + 29\right)\cdot 37^{5} + \left(a + 12\right)\cdot 37^{6} + \left(23 a + 26\right)\cdot 37^{7} + \left(33 a + 6\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 34 + 28\cdot 37 + \left(17 a + 9\right)\cdot 37^{2} + \left(5 a + 16\right)\cdot 37^{3} + 19\cdot 37^{4} + \left(21 a + 19\right)\cdot 37^{5} + \left(35 a + 2\right)\cdot 37^{6} + \left(13 a + 6\right)\cdot 37^{7} + \left(3 a + 7\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 5 + 2\cdot 37 + 28\cdot 37^{2} + 27\cdot 37^{3} + 28\cdot 37^{4} + 16\cdot 37^{6} + 29\cdot 37^{7} + 19\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 17 + \left(31 a + 32\right)\cdot 37 + \left(6 a + 7\right)\cdot 37^{2} + \left(8 a + 29\right)\cdot 37^{3} + \left(2 a + 15\right)\cdot 37^{4} + \left(7 a + 23\right)\cdot 37^{5} + \left(13 a + 27\right)\cdot 37^{6} + \left(34 a + 19\right)\cdot 37^{7} + 22\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 10 + \left(5 a + 22\right)\cdot 37 + \left(30 a + 3\right)\cdot 37^{2} + \left(28 a + 18\right)\cdot 37^{3} + \left(34 a + 16\right)\cdot 37^{4} + \left(29 a + 12\right)\cdot 37^{5} + \left(23 a + 36\right)\cdot 37^{6} + \left(2 a + 32\right)\cdot 37^{7} + \left(36 a + 28\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(1,2,5)(3,6,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,3)(5,6)$ $-3$
$3$ $2$ $(1,4)(2,3)$ $-1$
$3$ $2$ $(1,4)$ $1$
$6$ $2$ $(1,2)(3,4)$ $1$
$6$ $2$ $(1,5)(2,3)(4,6)$ $-1$
$8$ $3$ $(1,2,5)(3,6,4)$ $0$
$6$ $4$ $(1,2,4,3)$ $1$
$6$ $4$ $(1,6,4,5)(2,3)$ $-1$
$8$ $6$ $(1,3,6,4,2,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.