Properties

Label 3.2e4_227.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 227 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$3632= 2^{4} \cdot 227 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.227.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 50\cdot 139 + 34\cdot 139^{2} + 36\cdot 139^{3} + 27\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 + 23\cdot 139 + 49\cdot 139^{2} + 121\cdot 139^{3} + 22\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 91 + 131\cdot 139 + 66\cdot 139^{2} + 30\cdot 139^{3} + 34\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 124 + 72\cdot 139 + 127\cdot 139^{2} + 89\cdot 139^{3} + 54\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.