Properties

Label 3.2e4_19e2_47e2.42t37.2
Dimension 3
Group $\GL(3,2)$
Conductor $ 2^{4} \cdot 19^{2} \cdot 47^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\GL(3,2)$
Conductor:$12759184= 2^{4} \cdot 19^{2} \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 9 x^{5} + 35 x^{4} - 11 x^{3} - 37 x^{2} + 9 x + 11 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{3} + 6 x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 24 a^{2} + 16 a + 3 + \left(27 a^{2} + 8 a + 25\right)\cdot 37 + \left(27 a^{2} + 23 a + 28\right)\cdot 37^{2} + \left(6 a^{2} + 36 a + 5\right)\cdot 37^{3} + \left(13 a + 18\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 7\cdot 37 + 6\cdot 37^{2} + 26\cdot 37^{3} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 a^{2} + 29 a + 36 + \left(29 a^{2} + 2 a + 29\right)\cdot 37 + \left(15 a^{2} + 3 a + 7\right)\cdot 37^{2} + \left(34 a^{2} + 3 a + 2\right)\cdot 37^{3} + \left(12 a^{2} + 7 a + 34\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 a^{2} + 7 a + 6 + \left(18 a^{2} + 14 a + 27\right)\cdot 37 + \left(32 a^{2} + 19 a + 10\right)\cdot 37^{2} + \left(14 a^{2} + 14 a + 1\right)\cdot 37^{3} + \left(a^{2} + 31 a + 23\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a^{2} + 14 a + 6 + \left(3 a^{2} + 34\right)\cdot 37 + \left(6 a^{2} + 12 a + 5\right)\cdot 37^{2} + \left(2 a + 13\right)\cdot 37^{3} + \left(3 a^{2} + 28 a + 31\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a^{2} + 14 a + 8 + \left(27 a^{2} + 14 a + 24\right)\cdot 37 + \left(13 a^{2} + 31 a + 9\right)\cdot 37^{2} + \left(15 a^{2} + 22 a + 3\right)\cdot 37^{3} + \left(35 a^{2} + 28 a + 11\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 34 a^{2} + 31 a + 3 + \left(3 a^{2} + 33 a\right)\cdot 37 + \left(15 a^{2} + 21 a + 5\right)\cdot 37^{2} + \left(2 a^{2} + 31 a + 22\right)\cdot 37^{3} + \left(21 a^{2} + a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(2,4)(5,7)$
$(1,4)(2,7,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$21$ $2$ $(2,6)(3,7)$ $-1$ $-1$
$56$ $3$ $(1,7,3)(2,5,6)$ $0$ $0$
$42$ $4$ $(1,4)(2,7,6,3)$ $1$ $1$
$24$ $7$ $(1,2,5,7,6,3,4)$ $\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$ $-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$
$24$ $7$ $(1,7,4,5,3,2,6)$ $-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$ $\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
The blue line marks the conjugacy class containing complex conjugation.