Properties

Label 3.2e4_167e2.12t33.1
Dimension 3
Group $A_5$
Conductor $ 2^{4} \cdot 167^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$446224= 2^{4} \cdot 167^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 5 x^{3} + 5 x^{2} + 5 x - 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 103 + 309\cdot 311 + 174\cdot 311^{2} + 194\cdot 311^{3} + 9\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 134 + 140\cdot 311 + 113\cdot 311^{2} + 174\cdot 311^{3} + 176\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 155 + 198\cdot 311 + 201\cdot 311^{2} + 265\cdot 311^{3} + 4\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 255 + 185\cdot 311 + 282\cdot 311^{2} + 94\cdot 311^{3} + 219\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 287 + 98\cdot 311 + 160\cdot 311^{2} + 203\cdot 311^{3} + 211\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,2,3)$ $0$ $0$
$12$ $5$ $(1,2,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,3,4,5,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.