Properties

Label 3.2e4_151e2.12t33.1
Dimension 3
Group $A_5$
Conductor $ 2^{4} \cdot 151^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$364816= 2^{4} \cdot 151^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{3} - 2 x^{2} + 5 x - 6 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 4 + \left(39 a + 13\right)\cdot 53 + \left(7 a + 13\right)\cdot 53^{2} + \left(34 a + 34\right)\cdot 53^{3} + \left(45 a + 32\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 22 + \left(13 a + 34\right)\cdot 53 + \left(45 a + 4\right)\cdot 53^{2} + \left(18 a + 4\right)\cdot 53^{3} + \left(7 a + 22\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 51 a + 46 + \left(37 a + 43\right)\cdot 53 + \left(50 a + 38\right)\cdot 53^{2} + \left(27 a + 45\right)\cdot 53^{3} + \left(24 a + 15\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 28\cdot 53 + 4\cdot 53^{2} + 21\cdot 53^{3} + 2\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 38 + \left(15 a + 38\right)\cdot 53 + \left(2 a + 44\right)\cdot 53^{2} + 25 a\cdot 53^{3} + \left(28 a + 33\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,2,3)$ $0$ $0$
$12$ $5$ $(1,2,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,3,4,5,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.