Properties

Label 3.2e4_11e2_53e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 11^{2} \cdot 53^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$5438224= 2^{4} \cdot 11^{2} \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 6 x^{2} - 46 x - 54 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 25\cdot 103 + 102\cdot 103^{2} + 62\cdot 103^{3} + 43\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 95\cdot 103 + 12\cdot 103^{2} + 82\cdot 103^{3} + 43\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 + 36\cdot 103 + 31\cdot 103^{2} + 95\cdot 103^{3} + 74\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 51 + 49\cdot 103 + 59\cdot 103^{2} + 68\cdot 103^{3} + 43\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.