Properties

Label 3.2e3_7e5.7t3.1
Dimension 3
Group $C_7:C_3$
Conductor $ 2^{3} \cdot 7^{5}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_7:C_3$
Conductor:$134456= 2^{3} \cdot 7^{5} $
Artin number field: Splitting field of $f= x^{7} - 14 x^{5} + 56 x^{3} - 56 x - 22 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_7:C_3$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 17.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 9\cdot 11 + 9\cdot 11^{2} + 8\cdot 11^{3} + 11^{4} + 3\cdot 11^{5} + 6\cdot 11^{6} + 5\cdot 11^{7} + 2\cdot 11^{8} + 3\cdot 11^{9} + 6\cdot 11^{10} + 3\cdot 11^{11} + 11^{12} + 7\cdot 11^{13} + 7\cdot 11^{14} + 11^{15} + 7\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 2 }$ $=$ $ 7 a^{2} + 7 a + 4 + \left(9 a^{2} + 2 a + 5\right)\cdot 11 + \left(4 a^{2} + 9 a + 5\right)\cdot 11^{2} + \left(6 a^{2} + 8 a + 6\right)\cdot 11^{3} + \left(2 a^{2} + 7 a + 4\right)\cdot 11^{4} + \left(7 a^{2} + 5 a\right)\cdot 11^{5} + \left(10 a^{2} + 10 a + 10\right)\cdot 11^{6} + \left(2 a^{2} + 8 a + 4\right)\cdot 11^{7} + \left(6 a^{2} + 4 a + 4\right)\cdot 11^{8} + \left(2 a^{2} + 10 a + 1\right)\cdot 11^{9} + \left(9 a^{2} + 4 a\right)\cdot 11^{10} + \left(7 a^{2} + 9\right)\cdot 11^{11} + \left(4 a^{2} + 3 a + 3\right)\cdot 11^{12} + \left(9 a^{2} + 8 a + 9\right)\cdot 11^{13} + \left(8 a^{2} + 6 a + 8\right)\cdot 11^{14} + \left(8 a^{2} + 6 a + 7\right)\cdot 11^{15} + \left(3 a^{2} + a + 4\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 3 }$ $=$ $ 4 a^{2} + 8 a + 8 a^{2}11 + \left(a^{2} + 5 a + 5\right)\cdot 11^{2} + \left(2 a^{2} + 9 a + 4\right)\cdot 11^{3} + \left(4 a^{2} + 8 a + 10\right)\cdot 11^{4} + \left(10 a^{2} + 8 a\right)\cdot 11^{5} + \left(6 a^{2} + 10 a + 5\right)\cdot 11^{6} + \left(9 a^{2} + 8 a + 6\right)\cdot 11^{7} + \left(7 a^{2} + 5 a + 6\right)\cdot 11^{8} + \left(4 a^{2} + 6 a\right)\cdot 11^{9} + \left(3 a^{2} + 7\right)\cdot 11^{10} + \left(7 a^{2} + a + 4\right)\cdot 11^{11} + \left(3 a + 9\right)\cdot 11^{12} + \left(4 a^{2} + 10 a + 5\right)\cdot 11^{13} + \left(a^{2} + 10 a + 2\right)\cdot 11^{14} + \left(4 a^{2} + 4 a + 5\right)\cdot 11^{15} + \left(4 a^{2} + 4 a + 5\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 9 + \left(6 a^{2} + 6 a + 8\right)\cdot 11 + \left(7 a^{2} + 3 a + 7\right)\cdot 11^{2} + \left(5 a^{2} + 8 a + 6\right)\cdot 11^{3} + \left(4 a^{2} + 10 a\right)\cdot 11^{4} + \left(5 a^{2} + 4 a + 8\right)\cdot 11^{5} + \left(5 a^{2} + 5 a + 5\right)\cdot 11^{6} + \left(10 a^{2} + 2 a + 7\right)\cdot 11^{7} + \left(9 a^{2} + 7 a + 1\right)\cdot 11^{8} + \left(5 a^{2} + 7 a + 5\right)\cdot 11^{9} + \left(7 a + 3\right)\cdot 11^{10} + \left(a^{2} + 10 a + 5\right)\cdot 11^{11} + \left(7 a + 9\right)\cdot 11^{12} + \left(6 a^{2} + 8\right)\cdot 11^{13} + \left(3 a^{2} + 7 a + 8\right)\cdot 11^{14} + \left(6 a^{2} + 10 a\right)\cdot 11^{15} + \left(3 a^{2} + 3 a + 10\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 5 }$ $=$ $ 4 a^{2} + 4 a + 7 + \left(6 a^{2} + 3 a + 5\right)\cdot 11 + \left(3 a^{2} + 7 a + 2\right)\cdot 11^{2} + \left(3 a^{2} + 5 a + 7\right)\cdot 11^{3} + \left(10 a^{2} + 8 a + 4\right)\cdot 11^{4} + \left(4 a^{2} + 5 a + 7\right)\cdot 11^{5} + \left(5 a^{2} + 10 a + 5\right)\cdot 11^{6} + \left(2 a^{2} + 4 a\right)\cdot 11^{7} + 3 a^{2}11^{8} + \left(7 a^{2} + 5 a + 7\right)\cdot 11^{9} + \left(8 a^{2} + 7 a + 10\right)\cdot 11^{10} + \left(4 a^{2} + 4 a + 2\right)\cdot 11^{11} + 6\cdot 11^{12} + \left(10 a + 4\right)\cdot 11^{13} + \left(3 a^{2} + 2 a + 4\right)\cdot 11^{14} + \left(5 a^{2} + 10\right)\cdot 11^{15} + \left(6 a^{2} + 9 a + 2\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 6 }$ $=$ $ 7 a^{2} + 3 a + \left(9 a^{2} + a + 10\right)\cdot 11 + \left(10 a^{2} + 4\right)\cdot 11^{2} + \left(a^{2} + 8 a + 5\right)\cdot 11^{3} + \left(7 a^{2} + 2 a\right)\cdot 11^{4} + 9\cdot 11^{5} + \left(6 a + 5\right)\cdot 11^{6} + \left(9 a^{2} + 3 a + 5\right)\cdot 11^{7} + \left(8 a^{2} + 3 a + 7\right)\cdot 11^{8} + \left(8 a^{2} + 9 a + 1\right)\cdot 11^{9} + \left(a^{2} + 6 a + 5\right)\cdot 11^{10} + \left(5 a^{2} + 6 a + 3\right)\cdot 11^{11} + \left(10 a^{2} + 2 a + 1\right)\cdot 11^{12} + 4 a^{2}11^{13} + \left(4 a^{2} + a + 10\right)\cdot 11^{14} + \left(10 a^{2} + 9\right)\cdot 11^{15} + \left(9 a + 2\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 7 }$ $=$ $ 7 a + 2 + \left(4 a^{2} + 7 a + 5\right)\cdot 11 + \left(4 a^{2} + 7 a + 8\right)\cdot 11^{2} + \left(2 a^{2} + 3 a + 4\right)\cdot 11^{3} + \left(4 a^{2} + 5 a + 10\right)\cdot 11^{4} + \left(4 a^{2} + 7 a + 3\right)\cdot 11^{5} + \left(4 a^{2} + 5\right)\cdot 11^{6} + \left(9 a^{2} + 4 a + 2\right)\cdot 11^{7} + \left(7 a^{2} + 10\right)\cdot 11^{8} + \left(3 a^{2} + 5 a + 2\right)\cdot 11^{9} + \left(9 a^{2} + 5 a\right)\cdot 11^{10} + \left(6 a^{2} + 9 a + 4\right)\cdot 11^{11} + \left(5 a^{2} + 4 a + 1\right)\cdot 11^{12} + \left(8 a^{2} + 3 a + 8\right)\cdot 11^{13} + \left(4 a + 1\right)\cdot 11^{14} + \left(9 a^{2} + 10 a + 8\right)\cdot 11^{15} + \left(2 a^{2} + 4 a + 10\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(2,3,7)(4,5,6)$
$(1,5,6,7,4,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$7$ $3$ $(1,6,2)(4,7,5)$ $0$ $0$
$7$ $3$ $(1,2,6)(4,5,7)$ $0$ $0$
$3$ $7$ $(1,5,6,7,4,3,2)$ $-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$ $\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
$3$ $7$ $(1,7,2,6,3,5,4)$ $\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$ $-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$
The blue line marks the conjugacy class containing complex conjugation.