Properties

Label 3.2e3_7_107.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{3} \cdot 7 \cdot 107 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$5992= 2^{3} \cdot 7 \cdot 107 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} + 2 x^{3} + 5 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.2e3_7_107.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 43 a + 91 + \left(91 a + 36\right)\cdot 113 + \left(38 a + 94\right)\cdot 113^{2} + \left(70 a + 45\right)\cdot 113^{3} + \left(59 a + 67\right)\cdot 113^{4} + \left(70 a + 23\right)\cdot 113^{5} + \left(93 a + 92\right)\cdot 113^{6} +O\left(113^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 100 + \left(33 a + 13\right)\cdot 113 + \left(71 a + 60\right)\cdot 113^{2} + \left(38 a + 76\right)\cdot 113^{3} + \left(26 a + 102\right)\cdot 113^{4} + \left(55 a + 51\right)\cdot 113^{5} + \left(47 a + 36\right)\cdot 113^{6} +O\left(113^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 70 a + 42 + \left(21 a + 73\right)\cdot 113 + \left(74 a + 16\right)\cdot 113^{2} + \left(42 a + 60\right)\cdot 113^{3} + \left(53 a + 34\right)\cdot 113^{4} + \left(42 a + 19\right)\cdot 113^{5} + \left(19 a + 15\right)\cdot 113^{6} +O\left(113^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 77 a + 80 + \left(79 a + 38\right)\cdot 113 + \left(41 a + 91\right)\cdot 113^{2} + \left(74 a + 16\right)\cdot 113^{3} + \left(86 a + 41\right)\cdot 113^{4} + \left(57 a + 10\right)\cdot 113^{5} + \left(65 a + 99\right)\cdot 113^{6} +O\left(113^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 107 + 77\cdot 113 + 101\cdot 113^{2} + 93\cdot 113^{3} + 31\cdot 113^{4} + 75\cdot 113^{5} + 77\cdot 113^{6} +O\left(113^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 33 + 98\cdot 113 + 87\cdot 113^{2} + 45\cdot 113^{3} + 61\cdot 113^{4} + 45\cdot 113^{5} + 18\cdot 113^{6} +O\left(113^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(1,2,5)(3,6,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,3)(5,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(2,3)$$-1$
$6$$2$$(2,5)(3,6)$$1$
$6$$2$$(1,4)(2,5)(3,6)$$-1$
$8$$3$$(1,2,5)(3,6,4)$$0$
$6$$4$$(1,3,4,2)$$1$
$6$$4$$(1,4)(2,6,3,5)$$-1$
$8$$6$$(1,3,6,4,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.