Properties

Label 3.2e3_5e2_73.6t11.5
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{3} \cdot 5^{2} \cdot 73 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$14600= 2^{3} \cdot 5^{2} \cdot 73 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} - 19 x^{3} + 35 x^{2} + 16 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 54 + \left(31 a + 59\right)\cdot 61 + \left(45 a + 13\right)\cdot 61^{2} + \left(26 a + 31\right)\cdot 61^{3} + \left(12 a + 22\right)\cdot 61^{4} + \left(58 a + 40\right)\cdot 61^{5} + \left(16 a + 21\right)\cdot 61^{6} + \left(16 a + 51\right)\cdot 61^{7} + \left(45 a + 31\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 30 + 5\cdot 61 + 29\cdot 61^{2} + 44\cdot 61^{3} + 16\cdot 61^{4} + 31\cdot 61^{5} + 6\cdot 61^{6} + 52\cdot 61^{7} + 50\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 8 + \left(38 a + 22\right)\cdot 61 + \left(9 a + 6\right)\cdot 61^{2} + \left(54 a + 53\right)\cdot 61^{3} + \left(2 a + 44\right)\cdot 61^{4} + \left(7 a + 20\right)\cdot 61^{5} + 7\cdot 61^{6} + \left(11 a + 54\right)\cdot 61^{7} + \left(58 a + 29\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 58 + 37\cdot 61 + 5\cdot 61^{2} + 5\cdot 61^{3} + 36\cdot 61^{4} + 40\cdot 61^{5} + 44\cdot 61^{6} + 31\cdot 61^{7} + 54\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 58 a + 57 + \left(29 a + 26\right)\cdot 61 + \left(15 a + 28\right)\cdot 61^{2} + \left(34 a + 12\right)\cdot 61^{3} + \left(48 a + 8\right)\cdot 61^{4} + \left(2 a + 25\right)\cdot 61^{5} + \left(44 a + 41\right)\cdot 61^{6} + \left(44 a + 50\right)\cdot 61^{7} + \left(15 a + 60\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 31 a + 38 + \left(22 a + 30\right)\cdot 61 + \left(51 a + 38\right)\cdot 61^{2} + \left(6 a + 36\right)\cdot 61^{3} + \left(58 a + 54\right)\cdot 61^{4} + \left(53 a + 24\right)\cdot 61^{5} + 60 a\cdot 61^{6} + \left(49 a + 4\right)\cdot 61^{7} + \left(2 a + 16\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2,5)(3,4,6)$
$(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-3$
$3$ $2$ $(1,3)$ $1$
$3$ $2$ $(1,3)(2,4)$ $-1$
$6$ $2$ $(2,5)(4,6)$ $1$
$6$ $2$ $(1,3)(2,5)(4,6)$ $-1$
$8$ $3$ $(1,2,5)(3,4,6)$ $0$
$6$ $4$ $(1,4,3,2)$ $1$
$6$ $4$ $(1,6,3,5)(2,4)$ $-1$
$8$ $6$ $(1,4,6,3,2,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.