Properties

Label 3.2e3_3e4_7e4.7t3.1c1
Dimension 3
Group $C_7:C_3$
Conductor $ 2^{3} \cdot 3^{4} \cdot 7^{4}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_7:C_3$
Conductor:$1555848= 2^{3} \cdot 3^{4} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{7} - 42 x^{5} - 56 x^{4} + 126 x^{3} + 168 x^{2} - 98 x - 126 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_7:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 22.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 6 a^{2} + 8 a + 2 + \left(5 a^{2} + 4 a + 8\right)\cdot 13 + \left(12 a^{2} + 8 a + 4\right)\cdot 13^{2} + \left(10 a^{2} + 7 a + 2\right)\cdot 13^{3} + \left(9 a^{2} + a + 10\right)\cdot 13^{4} + \left(5 a^{2} + 4\right)\cdot 13^{5} + \left(3 a^{2} + 9 a + 6\right)\cdot 13^{6} + \left(6 a^{2} + a\right)\cdot 13^{7} + \left(5 a^{2} + 2 a + 12\right)\cdot 13^{8} + \left(9 a^{2} + 6 a + 12\right)\cdot 13^{9} + \left(7 a + 7\right)\cdot 13^{10} + \left(9 a^{2} + 2\right)\cdot 13^{11} + \left(a^{2} + 3 a + 1\right)\cdot 13^{12} + \left(a^{2} + 4 a + 2\right)\cdot 13^{13} + \left(11 a^{2} + 5 a + 9\right)\cdot 13^{14} + \left(3 a^{2} + 3 a + 2\right)\cdot 13^{15} + \left(2 a^{2} + 2\right)\cdot 13^{16} + \left(2 a^{2} + 10 a + 12\right)\cdot 13^{17} + \left(12 a + 5\right)\cdot 13^{18} + \left(8 a^{2} + 8 a + 4\right)\cdot 13^{19} + \left(4 a^{2} + 10 a + 5\right)\cdot 13^{20} + \left(5 a^{2} + 10 a + 2\right)\cdot 13^{21} +O\left(13^{ 22 }\right)$
$r_{ 2 }$ $=$ $ 2 + 4\cdot 13 + 9\cdot 13^{2} + 5\cdot 13^{3} + 10\cdot 13^{4} + 7\cdot 13^{5} + 10\cdot 13^{6} + 10\cdot 13^{7} + 11\cdot 13^{8} + 3\cdot 13^{9} + 6\cdot 13^{10} + 12\cdot 13^{12} + 13^{13} + 2\cdot 13^{14} + 8\cdot 13^{15} + 11\cdot 13^{16} + 7\cdot 13^{18} + 7\cdot 13^{19} + 11\cdot 13^{20} + 5\cdot 13^{21} +O\left(13^{ 22 }\right)$
$r_{ 3 }$ $=$ $ 2 a^{2} + 7 a + 1 + \left(3 a^{2} + 10 a + 5\right)\cdot 13 + \left(10 a^{2} + 10 a + 10\right)\cdot 13^{2} + \left(10 a^{2} + 2 a + 10\right)\cdot 13^{3} + \left(5 a + 6\right)\cdot 13^{4} + \left(12 a^{2} + 9 a + 4\right)\cdot 13^{5} + \left(9 a^{2} + 8 a + 6\right)\cdot 13^{6} + \left(8 a^{2} + 8 a + 12\right)\cdot 13^{7} + \left(10 a^{2} + 8 a + 5\right)\cdot 13^{8} + \left(9 a^{2} + 8 a\right)\cdot 13^{9} + \left(6 a^{2} + 7 a + 3\right)\cdot 13^{10} + \left(4 a^{2} + 6 a + 5\right)\cdot 13^{11} + \left(a^{2} + 12 a + 9\right)\cdot 13^{12} + \left(2 a^{2} + 11 a + 7\right)\cdot 13^{13} + \left(a^{2} + 2 a + 4\right)\cdot 13^{14} + \left(6 a^{2} + 1\right)\cdot 13^{15} + \left(a^{2} + 10 a + 1\right)\cdot 13^{16} + \left(2 a^{2} + 4 a + 12\right)\cdot 13^{17} + \left(5 a^{2} + 6 a + 3\right)\cdot 13^{18} + \left(5 a^{2} + 2 a + 5\right)\cdot 13^{19} + \left(5 a^{2} + 8 a + 6\right)\cdot 13^{20} + \left(9 a^{2} + 3\right)\cdot 13^{21} +O\left(13^{ 22 }\right)$
$r_{ 4 }$ $=$ $ 4 a^{2} + 2 + \left(5 a^{2} + 9 a + 9\right)\cdot 13 + \left(7 a^{2} + 2 a + 5\right)\cdot 13^{2} + \left(4 a^{2} + 11 a + 3\right)\cdot 13^{3} + \left(8 a^{2} + 3 a + 6\right)\cdot 13^{4} + \left(10 a^{2} + 3 a + 1\right)\cdot 13^{5} + \left(3 a^{2} + 3 a + 4\right)\cdot 13^{6} + \left(10 a^{2} + 12 a + 9\right)\cdot 13^{7} + \left(3 a^{2} + 4 a\right)\cdot 13^{8} + \left(5 a^{2} + 11 a + 1\right)\cdot 13^{9} + \left(4 a^{2} + 10 a + 1\right)\cdot 13^{10} + \left(2 a + 1\right)\cdot 13^{11} + \left(a^{2} + 9 a + 7\right)\cdot 13^{12} + \left(a^{2} + 3 a + 4\right)\cdot 13^{13} + \left(5 a^{2} + a + 7\right)\cdot 13^{14} + \left(7 a^{2} + 2 a + 9\right)\cdot 13^{15} + \left(5 a^{2} + 6 a + 8\right)\cdot 13^{16} + \left(8 a^{2} + 9 a + 1\right)\cdot 13^{17} + \left(6 a^{2} + 12 a + 5\right)\cdot 13^{18} + \left(5 a + 4\right)\cdot 13^{19} + \left(8 a^{2} + 11 a + 3\right)\cdot 13^{20} + \left(6 a^{2} + 3 a + 7\right)\cdot 13^{21} +O\left(13^{ 22 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{2} + 11 a + 5 + \left(4 a^{2} + 10 a + 2\right)\cdot 13 + \left(3 a^{2} + 6 a + 1\right)\cdot 13^{2} + \left(4 a^{2} + 2 a + 2\right)\cdot 13^{3} + \left(2 a^{2} + 6 a\right)\cdot 13^{4} + \left(8 a^{2} + 3 a + 8\right)\cdot 13^{5} + \left(12 a^{2} + 8 a + 5\right)\cdot 13^{6} + \left(10 a^{2} + 2 a + 2\right)\cdot 13^{7} + \left(9 a^{2} + 2 a + 9\right)\cdot 13^{8} + \left(6 a^{2} + 11 a\right)\cdot 13^{9} + \left(5 a^{2} + 10 a + 10\right)\cdot 13^{10} + \left(12 a^{2} + 5 a + 2\right)\cdot 13^{11} + \left(9 a^{2} + 10 a + 12\right)\cdot 13^{12} + \left(9 a^{2} + 9 a + 4\right)\cdot 13^{13} + \left(4 a + 8\right)\cdot 13^{14} + \left(3 a^{2} + 9 a + 1\right)\cdot 13^{15} + \left(9 a^{2} + 2 a + 7\right)\cdot 13^{16} + \left(8 a^{2} + 11 a + 3\right)\cdot 13^{17} + \left(7 a^{2} + 6 a + 7\right)\cdot 13^{18} + \left(12 a^{2} + a + 10\right)\cdot 13^{19} + \left(2 a^{2} + 7 a + 11\right)\cdot 13^{20} + \left(11 a^{2} + a + 5\right)\cdot 13^{21} +O\left(13^{ 22 }\right)$
$r_{ 6 }$ $=$ $ 2 a^{2} + 4 a + 8 + \left(a^{2} + 12 a + 3\right)\cdot 13 + \left(6 a^{2} + 11 a + 8\right)\cdot 13^{2} + \left(7 a^{2} + 3 a + 11\right)\cdot 13^{3} + \left(5 a^{2} + 6\right)\cdot 13^{4} + \left(a^{2} + 6 a + 6\right)\cdot 13^{5} + \left(6 a^{2} + 7 a + 11\right)\cdot 13^{6} + \left(a^{2} + 11 a + 1\right)\cdot 13^{7} + \left(9 a^{2} + a + 12\right)\cdot 13^{8} + \left(8 a^{2} + 5 a + 9\right)\cdot 13^{9} + \left(7 a^{2} + 3 a + 9\right)\cdot 13^{10} + \left(5 a^{2} + 6 a + 3\right)\cdot 13^{11} + \left(4 a^{2} + 8 a + 7\right)\cdot 13^{12} + \left(4 a^{2} + 5 a + 4\right)\cdot 13^{13} + \left(10 a^{2} + 7 a + 1\right)\cdot 13^{14} + \left(2 a^{2} + 9 a + 12\right)\cdot 13^{15} + \left(2 a^{2} + 9 a + 12\right)\cdot 13^{16} + \left(10 a^{2} + 4 a + 3\right)\cdot 13^{17} + \left(12 a^{2} + 5 a\right)\cdot 13^{18} + \left(10 a + 5\right)\cdot 13^{19} + \left(9 a^{2} + 11 a\right)\cdot 13^{20} + \left(3 a^{2} + 2 a + 12\right)\cdot 13^{21} +O\left(13^{ 22 }\right)$
$r_{ 7 }$ $=$ $ 7 a^{2} + 9 a + 6 + \left(6 a^{2} + 4 a + 6\right)\cdot 13 + \left(12 a^{2} + 11 a + 12\right)\cdot 13^{2} + \left(10 a + 2\right)\cdot 13^{3} + \left(12 a^{2} + 8 a + 11\right)\cdot 13^{4} + \left(3 a + 5\right)\cdot 13^{5} + \left(3 a^{2} + 2 a + 7\right)\cdot 13^{6} + \left(a^{2} + 2 a + 1\right)\cdot 13^{7} + 6 a\cdot 13^{8} + \left(12 a^{2} + 9 a + 10\right)\cdot 13^{9} + 11 a\cdot 13^{10} + \left(7 a^{2} + 3 a + 10\right)\cdot 13^{11} + \left(7 a^{2} + 8 a + 2\right)\cdot 13^{12} + \left(7 a^{2} + 3 a\right)\cdot 13^{13} + \left(10 a^{2} + 4 a + 6\right)\cdot 13^{14} + \left(2 a^{2} + a + 3\right)\cdot 13^{15} + \left(5 a^{2} + 10 a + 8\right)\cdot 13^{16} + \left(7 a^{2} + 11 a + 4\right)\cdot 13^{17} + \left(6 a^{2} + 7 a + 9\right)\cdot 13^{18} + \left(11 a^{2} + 9 a + 1\right)\cdot 13^{19} + \left(8 a^{2} + 2 a\right)\cdot 13^{20} + \left(2 a^{2} + 6 a + 2\right)\cdot 13^{21} +O\left(13^{ 22 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7,3,5,2,6,4)$
$(1,7,5)(2,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$3$
$7$$3$$(1,7,5)(2,3,6)$$0$
$7$$3$$(1,5,7)(2,6,3)$$0$
$3$$7$$(1,7,3,5,2,6,4)$$-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$
$3$$7$$(1,5,4,3,6,7,2)$$\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
The blue line marks the conjugacy class containing complex conjugation.