Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 16 + 99\cdot 149 + 124\cdot 149^{2} + 86\cdot 149^{3} + 134\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 + 28\cdot 149 + 91\cdot 149^{2} + 57\cdot 149^{3} + 146\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 118 + 36\cdot 149 + 12\cdot 149^{2} + 26\cdot 149^{3} + 54\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 142 + 133\cdot 149 + 69\cdot 149^{2} + 127\cdot 149^{3} + 111\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.