Properties

Label 3.2e3_3e2_53.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{3} \cdot 3^{2} \cdot 53 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3816= 2^{3} \cdot 3^{2} \cdot 53 $
Artin number field: Splitting field of $f= x^{6} - 12 x^{4} - 123 x^{2} - 954 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.2e3_53.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 18.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 13\cdot 17 + 10\cdot 17^{2} + 9\cdot 17^{3} + 8\cdot 17^{4} + 3\cdot 17^{5} + 13\cdot 17^{6} + 16\cdot 17^{7} + 14\cdot 17^{8} + 6\cdot 17^{9} + 5\cdot 17^{10} + 15\cdot 17^{11} + 8\cdot 17^{12} + 14\cdot 17^{13} + 16\cdot 17^{14} + 13\cdot 17^{15} + 12\cdot 17^{16} + 12\cdot 17^{17} +O\left(17^{ 18 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 7 + \left(6 a + 5\right)\cdot 17 + \left(a + 4\right)\cdot 17^{2} + \left(10 a + 12\right)\cdot 17^{3} + \left(14 a + 3\right)\cdot 17^{4} + \left(2 a + 4\right)\cdot 17^{5} + \left(7 a + 10\right)\cdot 17^{6} + \left(8 a + 15\right)\cdot 17^{7} + 8 a\cdot 17^{8} + \left(2 a + 12\right)\cdot 17^{9} + \left(15 a + 2\right)\cdot 17^{10} + \left(10 a + 2\right)\cdot 17^{11} + \left(7 a + 16\right)\cdot 17^{12} + \left(15 a + 5\right)\cdot 17^{13} + \left(10 a + 12\right)\cdot 17^{14} + \left(3 a + 10\right)\cdot 17^{15} + \left(16 a + 4\right)\cdot 17^{16} + \left(5 a + 15\right)\cdot 17^{17} +O\left(17^{ 18 }\right)$
$r_{ 3 }$ $=$ $ a + 6 + \left(10 a + 13\right)\cdot 17 + \left(15 a + 15\right)\cdot 17^{2} + \left(6 a + 3\right)\cdot 17^{3} + \left(2 a + 8\right)\cdot 17^{4} + \left(14 a + 9\right)\cdot 17^{5} + \left(9 a + 14\right)\cdot 17^{6} + \left(8 a + 16\right)\cdot 17^{7} + 8 a\cdot 17^{8} + \left(14 a + 6\right)\cdot 17^{9} + \left(a + 15\right)\cdot 17^{10} + \left(6 a + 14\right)\cdot 17^{11} + \left(9 a + 12\right)\cdot 17^{12} + \left(a + 13\right)\cdot 17^{13} + \left(6 a + 7\right)\cdot 17^{14} + \left(13 a + 3\right)\cdot 17^{15} + \left(11 a + 5\right)\cdot 17^{17} +O\left(17^{ 18 }\right)$
$r_{ 4 }$ $=$ $ 16 + 3\cdot 17 + 6\cdot 17^{2} + 7\cdot 17^{3} + 8\cdot 17^{4} + 13\cdot 17^{5} + 3\cdot 17^{6} + 2\cdot 17^{8} + 10\cdot 17^{9} + 11\cdot 17^{10} + 17^{11} + 8\cdot 17^{12} + 2\cdot 17^{13} + 3\cdot 17^{15} + 4\cdot 17^{16} + 4\cdot 17^{17} +O\left(17^{ 18 }\right)$
$r_{ 5 }$ $=$ $ a + 10 + \left(10 a + 11\right)\cdot 17 + \left(15 a + 12\right)\cdot 17^{2} + \left(6 a + 4\right)\cdot 17^{3} + \left(2 a + 13\right)\cdot 17^{4} + \left(14 a + 12\right)\cdot 17^{5} + \left(9 a + 6\right)\cdot 17^{6} + \left(8 a + 1\right)\cdot 17^{7} + \left(8 a + 16\right)\cdot 17^{8} + \left(14 a + 4\right)\cdot 17^{9} + \left(a + 14\right)\cdot 17^{10} + \left(6 a + 14\right)\cdot 17^{11} + 9 a\cdot 17^{12} + \left(a + 11\right)\cdot 17^{13} + \left(6 a + 4\right)\cdot 17^{14} + \left(13 a + 6\right)\cdot 17^{15} + 12\cdot 17^{16} + \left(11 a + 1\right)\cdot 17^{17} +O\left(17^{ 18 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 11 + \left(6 a + 3\right)\cdot 17 + \left(a + 1\right)\cdot 17^{2} + \left(10 a + 13\right)\cdot 17^{3} + \left(14 a + 8\right)\cdot 17^{4} + \left(2 a + 7\right)\cdot 17^{5} + \left(7 a + 2\right)\cdot 17^{6} + 8 a\cdot 17^{7} + \left(8 a + 16\right)\cdot 17^{8} + \left(2 a + 10\right)\cdot 17^{9} + \left(15 a + 1\right)\cdot 17^{10} + \left(10 a + 2\right)\cdot 17^{11} + \left(7 a + 4\right)\cdot 17^{12} + \left(15 a + 3\right)\cdot 17^{13} + \left(10 a + 9\right)\cdot 17^{14} + \left(3 a + 13\right)\cdot 17^{15} + \left(16 a + 16\right)\cdot 17^{16} + \left(5 a + 11\right)\cdot 17^{17} +O\left(17^{ 18 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(2,5)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)(2,5)$$-1$
$3$$2$$(2,5)$$1$
$6$$2$$(1,2)(4,5)$$-1$
$6$$2$$(1,4)(2,3)(5,6)$$1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,5,4,2)$$-1$
$6$$4$$(1,4)(2,6,5,3)$$1$
$8$$6$$(1,3,2,4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.