Properties

Label 3.2e3_3e2_11_13.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{3} \cdot 3^{2} \cdot 11 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$10296= 2^{3} \cdot 3^{2} \cdot 11 \cdot 13 $
Artin number field: Splitting field of $f= x^{4} - x^{2} - 6 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 55\cdot 211 + 84\cdot 211^{2} + 172\cdot 211^{3} + 177\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 + 47\cdot 211 + 89\cdot 211^{2} + 51\cdot 211^{3} + 162\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 63 + 140\cdot 211 + 155\cdot 211^{2} + 115\cdot 211^{3} + 188\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 91 + 179\cdot 211 + 92\cdot 211^{2} + 82\cdot 211^{3} + 104\cdot 211^{4} +O\left(211^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.