Properties

Label 3.2e3_31e2.6t6.2
Dimension 3
Group $A_4\times C_2$
Conductor $ 2^{3} \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$7688= 2^{3} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} + 2 x^{3} - 3 x^{2} - 9 x + 27 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 17 + 9\cdot 89 + 79\cdot 89^{2} + 63\cdot 89^{3} + 75\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 4 + \left(13 a + 11\right)\cdot 89 + 33 a\cdot 89^{2} + \left(9 a + 36\right)\cdot 89^{3} + \left(67 a + 29\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 a + 4 + \left(61 a + 87\right)\cdot 89 + \left(39 a + 36\right)\cdot 89^{2} + \left(68 a + 54\right)\cdot 89^{3} + \left(6 a + 18\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 a + 38 + \left(27 a + 29\right)\cdot 89 + \left(49 a + 75\right)\cdot 89^{2} + \left(20 a + 48\right)\cdot 89^{3} + \left(82 a + 86\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 82 a + 53 + \left(75 a + 6\right)\cdot 89 + \left(55 a + 41\right)\cdot 89^{2} + \left(79 a + 68\right)\cdot 89^{3} + \left(21 a + 44\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 63 + 34\cdot 89 + 34\cdot 89^{2} + 84\cdot 89^{3} + 11\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(2,5)$
$(1,2,3)(4,6,5)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-3$
$3$ $2$ $(3,4)$ $1$
$3$ $2$ $(1,6)(3,4)$ $-1$
$4$ $3$ $(1,2,3)(4,6,5)$ $0$
$4$ $3$ $(1,3,2)(4,5,6)$ $0$
$4$ $6$ $(1,2,3,6,5,4)$ $0$
$4$ $6$ $(1,4,5,6,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.