Properties

Label 3.2e3_17_59e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{3} \cdot 17 \cdot 59^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$473416= 2^{3} \cdot 17 \cdot 59^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 12 x^{4} + 26 x^{3} + 44 x^{2} - 114 x - 61 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 31 + 8\cdot 47^{2} + 18\cdot 47^{3} + 14\cdot 47^{4} + 46\cdot 47^{5} + 18\cdot 47^{6} + 23\cdot 47^{7} + 3\cdot 47^{8} + 44\cdot 47^{9} +O\left(47^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 8 + \left(46 a + 29\right)\cdot 47 + \left(34 a + 2\right)\cdot 47^{2} + \left(27 a + 3\right)\cdot 47^{3} + \left(5 a + 31\right)\cdot 47^{4} + \left(30 a + 37\right)\cdot 47^{5} + \left(21 a + 25\right)\cdot 47^{6} + \left(9 a + 29\right)\cdot 47^{7} + \left(19 a + 35\right)\cdot 47^{8} + \left(34 a + 14\right)\cdot 47^{9} +O\left(47^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 12 + 5\cdot 47 + 23\cdot 47^{2} + 13\cdot 47^{3} + 13\cdot 47^{4} + 39\cdot 47^{5} + 30\cdot 47^{6} + 28\cdot 47^{7} + 24\cdot 47^{8} + 16\cdot 47^{9} +O\left(47^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 31 + 40\cdot 47 + \left(12 a + 25\right)\cdot 47^{2} + \left(19 a + 23\right)\cdot 47^{3} + \left(41 a + 14\right)\cdot 47^{4} + \left(16 a + 45\right)\cdot 47^{5} + \left(25 a + 38\right)\cdot 47^{6} + \left(37 a + 26\right)\cdot 47^{7} + \left(27 a + 17\right)\cdot 47^{8} + \left(12 a + 17\right)\cdot 47^{9} +O\left(47^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 46 a + 8 + \left(20 a + 11\right)\cdot 47 + \left(7 a + 20\right)\cdot 47^{2} + \left(36 a + 32\right)\cdot 47^{3} + \left(37 a + 37\right)\cdot 47^{4} + \left(34 a + 40\right)\cdot 47^{5} + 29 a\cdot 47^{6} + \left(35 a + 19\right)\cdot 47^{7} + \left(37 a + 33\right)\cdot 47^{8} + \left(12 a + 6\right)\cdot 47^{9} +O\left(47^{ 10 }\right)$
$r_{ 6 }$ $=$ $ a + 6 + \left(26 a + 7\right)\cdot 47 + \left(39 a + 14\right)\cdot 47^{2} + \left(10 a + 3\right)\cdot 47^{3} + \left(9 a + 30\right)\cdot 47^{4} + \left(12 a + 25\right)\cdot 47^{5} + \left(17 a + 25\right)\cdot 47^{6} + \left(11 a + 13\right)\cdot 47^{7} + \left(9 a + 26\right)\cdot 47^{8} + \left(34 a + 41\right)\cdot 47^{9} +O\left(47^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,4)(3,5)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-3$
$3$ $2$ $(1,3)$ $1$
$3$ $2$ $(1,3)(4,5)$ $-1$
$6$ $2$ $(2,4)(5,6)$ $1$
$6$ $2$ $(1,3)(2,4)(5,6)$ $-1$
$8$ $3$ $(1,4,2)(3,5,6)$ $0$
$6$ $4$ $(1,5,3,4)$ $1$
$6$ $4$ $(1,3)(2,5,6,4)$ $-1$
$8$ $6$ $(1,5,6,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.