Properties

Label 3.2e3_173e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{3} \cdot 173^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$239432= 2^{3} \cdot 173^{2} $
Artin number field: Splitting field of $f= x^{6} + 8 x^{4} - 3 x^{2} - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 65 a + 58 + \left(2 a + 19\right)\cdot 71 + \left(36 a + 26\right)\cdot 71^{2} + \left(70 a + 6\right)\cdot 71^{3} + \left(10 a + 2\right)\cdot 71^{4} + \left(57 a + 55\right)\cdot 71^{5} + \left(52 a + 3\right)\cdot 71^{6} + \left(66 a + 18\right)\cdot 71^{7} + \left(3 a + 24\right)\cdot 71^{8} + \left(19 a + 44\right)\cdot 71^{9} + \left(2 a + 45\right)\cdot 71^{10} +O\left(71^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 65 a + 25 + \left(2 a + 39\right)\cdot 71 + \left(36 a + 46\right)\cdot 71^{2} + \left(70 a + 30\right)\cdot 71^{3} + \left(10 a + 46\right)\cdot 71^{4} + \left(57 a + 54\right)\cdot 71^{5} + \left(52 a + 18\right)\cdot 71^{6} + \left(66 a + 43\right)\cdot 71^{7} + \left(3 a + 34\right)\cdot 71^{8} + \left(19 a + 63\right)\cdot 71^{9} + \left(2 a + 39\right)\cdot 71^{10} +O\left(71^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 46 + 28\cdot 71 + 43\cdot 71^{2} + 24\cdot 71^{3} + 39\cdot 71^{4} + 63\cdot 71^{5} + 51\cdot 71^{6} + 4\cdot 71^{7} + 10\cdot 71^{8} + 61\cdot 71^{9} + 18\cdot 71^{10} +O\left(71^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 13 + \left(68 a + 51\right)\cdot 71 + \left(34 a + 44\right)\cdot 71^{2} + 64\cdot 71^{3} + \left(60 a + 68\right)\cdot 71^{4} + \left(13 a + 15\right)\cdot 71^{5} + \left(18 a + 67\right)\cdot 71^{6} + \left(4 a + 52\right)\cdot 71^{7} + \left(67 a + 46\right)\cdot 71^{8} + \left(51 a + 26\right)\cdot 71^{9} + \left(68 a + 25\right)\cdot 71^{10} +O\left(71^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 46 + \left(68 a + 31\right)\cdot 71 + \left(34 a + 24\right)\cdot 71^{2} + 40\cdot 71^{3} + \left(60 a + 24\right)\cdot 71^{4} + \left(13 a + 16\right)\cdot 71^{5} + \left(18 a + 52\right)\cdot 71^{6} + \left(4 a + 27\right)\cdot 71^{7} + \left(67 a + 36\right)\cdot 71^{8} + \left(51 a + 7\right)\cdot 71^{9} + \left(68 a + 31\right)\cdot 71^{10} +O\left(71^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 25 + 42\cdot 71 + 27\cdot 71^{2} + 46\cdot 71^{3} + 31\cdot 71^{4} + 7\cdot 71^{5} + 19\cdot 71^{6} + 66\cdot 71^{7} + 60\cdot 71^{8} + 9\cdot 71^{9} + 52\cdot 71^{10} +O\left(71^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(1,4)$ $1$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(2,3)(5,6)$ $-1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $1$
$8$ $3$ $(1,3,2)(4,6,5)$ $0$
$6$ $4$ $(1,6,4,3)$ $-1$
$6$ $4$ $(1,4)(2,6,5,3)$ $1$
$8$ $6$ $(1,6,5,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.