Properties

Label 3.2e3_139e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{3} \cdot 139^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$154568= 2^{3} \cdot 139^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} - 3 x^{3} + 3 x^{2} - 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 19 + \left(33 a + 16\right)\cdot 41 + \left(11 a + 38\right)\cdot 41^{2} + 10 a\cdot 41^{3} + \left(13 a + 37\right)\cdot 41^{4} + \left(39 a + 19\right)\cdot 41^{5} + 8\cdot 41^{6} + \left(11 a + 25\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 20 + \left(29 a + 14\right)\cdot 41 + \left(9 a + 29\right)\cdot 41^{2} + \left(30 a + 13\right)\cdot 41^{3} + \left(15 a + 33\right)\cdot 41^{4} + \left(19 a + 4\right)\cdot 41^{5} + \left(3 a + 23\right)\cdot 41^{6} + \left(29 a + 5\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 30 + \left(7 a + 4\right)\cdot 41 + \left(29 a + 40\right)\cdot 41^{2} + \left(30 a + 19\right)\cdot 41^{3} + \left(27 a + 25\right)\cdot 41^{4} + \left(a + 1\right)\cdot 41^{5} + \left(40 a + 13\right)\cdot 41^{6} + \left(29 a + 16\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 2 + 18\cdot 41 + 41^{2} + 11\cdot 41^{3} + 6\cdot 41^{4} + 35\cdot 41^{5} + 20\cdot 41^{6} + 34\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 5 + \left(11 a + 27\right)\cdot 41 + \left(31 a + 28\right)\cdot 41^{2} + \left(10 a + 12\right)\cdot 41^{3} + \left(25 a + 9\right)\cdot 41^{4} + \left(21 a + 6\right)\cdot 41^{5} + \left(37 a + 14\right)\cdot 41^{6} + \left(11 a + 7\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 7 + 41 + 26\cdot 41^{2} + 23\cdot 41^{3} + 11\cdot 41^{4} + 14\cdot 41^{5} + 2\cdot 41^{6} + 34\cdot 41^{7} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,6)$
$(1,2,4)(3,5,6)$
$(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-3$
$3$ $2$ $(1,3)(4,6)$ $-1$
$3$ $2$ $(1,3)$ $1$
$6$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(1,3)(2,4)(5,6)$ $1$
$8$ $3$ $(1,2,4)(3,5,6)$ $0$
$6$ $4$ $(1,6,3,4)$ $-1$
$6$ $4$ $(1,6,3,4)(2,5)$ $1$
$8$ $6$ $(1,6,5,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.