Properties

Label 3.2e3_107e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{3} \cdot 107^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$91592= 2^{3} \cdot 107^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 36 + \left(46 a + 32\right)\cdot 47 + \left(32 a + 12\right)\cdot 47^{2} + \left(5 a + 4\right)\cdot 47^{3} + \left(16 a + 27\right)\cdot 47^{4} + \left(46 a + 30\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 + 37\cdot 47 + 32\cdot 47^{2} + 29\cdot 47^{3} + 46\cdot 47^{4} +O\left(47^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 43 + 31\cdot 47 + 33\cdot 47^{2} + 8\cdot 47^{3} + 25\cdot 47^{4} + 16\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 7 + 22\cdot 47 + \left(14 a + 32\right)\cdot 47^{2} + \left(41 a + 29\right)\cdot 47^{3} + \left(30 a + 6\right)\cdot 47^{4} + 13\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 8 + \left(2 a + 13\right)\cdot 47 + \left(11 a + 28\right)\cdot 47^{2} + \left(32 a + 7\right)\cdot 47^{3} + \left(46 a + 34\right)\cdot 47^{4} + \left(40 a + 45\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 36 + \left(44 a + 3\right)\cdot 47 + \left(35 a + 1\right)\cdot 47^{2} + \left(14 a + 14\right)\cdot 47^{3} + 47^{4} + \left(6 a + 34\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(4,6)$
$(1,4)$
$(1,5,2)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,3)(5,6)$ $-3$
$3$ $2$ $(1,4)$ $1$
$3$ $2$ $(1,4)(5,6)$ $-1$
$6$ $2$ $(2,5)(3,6)$ $-1$
$6$ $2$ $(1,4)(2,5)(3,6)$ $1$
$8$ $3$ $(1,5,2)(3,4,6)$ $0$
$6$ $4$ $(1,6,4,5)$ $-1$
$6$ $4$ $(1,4)(2,6,3,5)$ $1$
$8$ $6$ $(1,6,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.